These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32625024)

  • 1. Fast genome editing in 
    Wu G; Drufva E; Wu K
    Eng Life Sci; 2019 Jun; 19(6):471-477. PubMed ID: 32625024
    [No Abstract]   [Full Text] [Related]  

  • 2. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Construction of Portable CRISPR-Cpf1-Mediated Genome Editing in
    Hao W; Suo F; Lin Q; Chen Q; Zhou L; Liu Z; Cui W; Zhou Z
    Front Bioeng Biotechnol; 2020; 8():524676. PubMed ID: 32984297
    [No Abstract]   [Full Text] [Related]  

  • 4. Development and application of a rapid all-in-one plasmid CRISPR-Cas9 system for iterative genome editing in Bacillus subtilis.
    Zou Y; Qiu L; Xie A; Han W; Zhang S; Li J; Zhao S; Li Y; Liang Y; Hu Y
    Microb Cell Fact; 2022 Aug; 21(1):173. PubMed ID: 35999638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis.
    Liu Y; Cheng H; Li H; Zhang Y; Wang M
    Appl Environ Microbiol; 2023 Jun; 89(6):e0023023. PubMed ID: 37272803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis.
    Sachla AJ; Alfonso AJ; Helmann JD
    Microbiol Spectr; 2021 Oct; 9(2):e0075421. PubMed ID: 34523974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.
    Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD
    Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New shuttle vectors for Escherichia coli and Bacillus subtilis. I. Construction and characterization of plasmid pHY460 with twelve unique cloning sites.
    Ishiwa H; Tsuchida N
    Gene; 1984 Dec; 32(1-2):129-34. PubMed ID: 6099307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of stable extracellular DNA released from Escherichia coli into the Bacillus subtilis genome vector by culture mix method.
    Itaya M; Kaneko S
    Nucleic Acids Res; 2010 May; 38(8):2551-7. PubMed ID: 20308163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unmarked genetic manipulation in Bacillus subtilis by natural co-transformation.
    Ye B; Zhou C; Zhao L; Cheng S; Cheng D; Yan X
    J Biotechnol; 2018 Oct; 284():57-62. PubMed ID: 30092237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroporation is a feasible method to introduce circularized or linearized DNA into B. subtilis chromosome.
    Yang MM; Zhang WW; Bai XT; Li HX; Cen PL
    Mol Biol Rep; 2010 Jun; 37(5):2207-13. PubMed ID: 19669928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an Efficient Genome Editing Tool in Bacillus licheniformis Using CRISPR-Cas9 Nickase.
    Li K; Cai D; Wang Z; He Z; Chen S
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330178
    [No Abstract]   [Full Text] [Related]  

  • 13. Construction of a novel gene bank of Bacillus subtilis using a low copy number vector in Escherichia coli.
    Hasnain S; Thomas CM
    J Gen Microbiol; 1986 Jul; 132(7):1863-74. PubMed ID: 3098899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An alternative genome-integrated method for undomesticated Bacillus subtilis and related species.
    Mahipant G; Kato J; Kataoka N; Vangnai AS
    J Gen Appl Microbiol; 2019 May; 65(2):96-105. PubMed ID: 30487367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new cloning system for Bacillus subtilis comprising elements of phage, plasmid and transposon vectors.
    Poth H; Youngman P
    Gene; 1988 Dec; 73(1):215-26. PubMed ID: 2854092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping a cloned gene under sporulation control by inserttion of a drug resistance marker into the Bacillus subtilis chromosome.
    Haldenwang WG; Banner CD; Ollington JF; Losick R; Hoch JA; O'Connor MB; Sonenshein AL
    J Bacteriol; 1980 Apr; 142(1):90-8. PubMed ID: 6768719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.
    Juhas M; Ajioka JW
    J Microbiol Methods; 2016 Jun; 125():1-7. PubMed ID: 27033694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis.
    Zhang XZ; Zhang Y-
    Microb Biotechnol; 2011 Jan; 4(1):98-105. PubMed ID: 21255377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of thymidylate synthetase activity in Bacillus subtilis upon integration of a cloned gene from Escherichia coli.
    Rubin EM; Wilson GA; Young FE
    Gene; 1980 Aug; 10(3):227-35. PubMed ID: 6254841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis.
    de Vos WM; de Vries SC; Venema G
    Gene; 1983 Nov; 25(2-3):301-8. PubMed ID: 6420239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.