These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 32625106)
1. Kalev-Zylinska ML; Hearn JI; Makhro A; Bogdanova A Front Physiol; 2020; 11():577. PubMed ID: 32625106 [TBL] [Abstract][Full Text] [Related]
2. N-Methyl-D-Aspartate Receptor Hypofunction in Meg-01 Cells Reveals a Role for Intracellular Calcium Homeostasis in Balancing Megakaryocytic-Erythroid Differentiation. Hearn JI; Green TN; Chopra M; Nursalim YNS; Ladvanszky L; Knowlton N; Blenkiron C; Poulsen RC; Singleton DC; Bohlander SK; Kalev-Zylinska ML Thromb Haemost; 2020 Apr; 120(4):671-686. PubMed ID: 32289863 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of glutamate regulated calcium entry into leukemic megakaryoblasts reduces cell proliferation and supports differentiation. Kamal T; Green TN; Morel-Kopp MC; Ward CM; McGregor AL; McGlashan SR; Bohlander SK; Browett PJ; Teague L; During MJ; Skerry TM; Josefsson EC; Kalev-Zylinska ML Cell Signal; 2015 Sep; 27(9):1860-72. PubMed ID: 25982509 [TBL] [Abstract][Full Text] [Related]
4. Kamal T; Green TN; Hearn JI; Josefsson EC; Morel-Kopp MC; Ward CM; During MJ; Kalev-Zylinska ML Res Pract Thromb Haemost; 2018 Jan; 2(1):125-138. PubMed ID: 30046713 [TBL] [Abstract][Full Text] [Related]
5. N-methyl-D-aspartate receptors in human erythroid precursor cells and in circulating red blood cells contribute to the intracellular calcium regulation. Makhro A; Hänggi P; Goede JS; Wang J; Brüggemann A; Gassmann M; Schmugge M; Kaestner L; Speer O; Bogdanova A Am J Physiol Cell Physiol; 2013 Dec; 305(11):C1123-38. PubMed ID: 24048732 [TBL] [Abstract][Full Text] [Related]
6. N-methyl-D-aspartate receptor regulates the circadian clock in megakaryocytic cells and impacts cell proliferation through BMAL1. Hearn JI; Alhilali M; Kim M; Kalev-Zylinska ML; Poulsen RC Platelets; 2023 Dec; 34(1):2206918. PubMed ID: 37183795 [TBL] [Abstract][Full Text] [Related]
7. Red blood cells of sickle cell disease patients exhibit abnormally high abundance of N-methyl D-aspartate receptors mediating excessive calcium uptake. Hänggi P; Makhro A; Gassmann M; Schmugge M; Goede JS; Speer O; Bogdanova A Br J Haematol; 2014 Oct; 167(2):252-64. PubMed ID: 25041184 [TBL] [Abstract][Full Text] [Related]
8. Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation. Hearn JI; Green TN; Hisey CL; Bender M; Josefsson EC; Knowlton N; Baumann J; Poulsen RC; Bohlander SK; Kalev-Zylinska ML Blood; 2022 Apr; 139(17):2673-2690. PubMed ID: 35245376 [TBL] [Abstract][Full Text] [Related]
9. N-methyl-D-aspartate receptors amplify activation and aggregation of human platelets. Kalev-Zylinska ML; Green TN; Morel-Kopp MC; Sun PP; Park YE; Lasham A; During MJ; Ward CM Thromb Res; 2014 May; 133(5):837-47. PubMed ID: 24593912 [TBL] [Abstract][Full Text] [Related]
10. Functional plasticity of the N-methyl-d-aspartate receptor in differentiating human erythroid precursor cells. Hänggi P; Telezhkin V; Kemp PJ; Schmugge M; Gassmann M; Goede JS; Speer O; Bogdanova A Am J Physiol Cell Physiol; 2015 Jun; 308(12):C993-C1007. PubMed ID: 25788577 [TBL] [Abstract][Full Text] [Related]
14. [Hematopoiesis and its regulation. Comparison between erythropoiesis and megakaryocytopoiesis]. Vainchenker W; Debili N; Methia N; Mouthon MA; Wendling F Bull Acad Natl Med; 1994 May; 178(5):753-78; discussion 778-9. PubMed ID: 7953887 [TBL] [Abstract][Full Text] [Related]
15. NMDA-Type Glutamate Receptor Activation Promotes Vascular Remodeling and Pulmonary Arterial Hypertension. Dumas SJ; Bru-Mercier G; Courboulin A; Quatredeniers M; Rücker-Martin C; Antigny F; Nakhleh MK; Ranchoux B; Gouadon E; Vinhas MC; Vocelle M; Raymond N; Dorfmüller P; Fadel E; Perros F; Humbert M; Cohen-Kaminsky S Circulation; 2018 May; 137(22):2371-2389. PubMed ID: 29444988 [TBL] [Abstract][Full Text] [Related]
16. Tseng YS; Liao CH; Wu WB; Ma MC Am J Physiol Renal Physiol; 2021 May; 320(5):F799-F813. PubMed ID: 33749324 [TBL] [Abstract][Full Text] [Related]
17. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Yu SP; Jiang MQ; Shim SS; Pourkhodadad S; Wei L Mol Neurodegener; 2023 Jul; 18(1):43. PubMed ID: 37400870 [TBL] [Abstract][Full Text] [Related]
18. Activity-dependent regulation of NMDA receptors in substantia nigra dopaminergic neurones. Wild AR; Jones S; Gibb AJ J Physiol; 2014 Feb; 592(4):653-68. PubMed ID: 24344168 [TBL] [Abstract][Full Text] [Related]
19. MEIS1 regulates early erythroid and megakaryocytic cell fate. Zeddies S; Jansen SB; di Summa F; Geerts D; Zwaginga JJ; van der Schoot CE; von Lindern M; Thijssen-Timmer DC Haematologica; 2014 Oct; 99(10):1555-64. PubMed ID: 25107888 [TBL] [Abstract][Full Text] [Related]
20. The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α (PDGFRA) in erythropoiesis and megakaryocytopoiesis. Zhai PF; Wang F; Su R; Lin HS; Jiang CL; Yang GH; Yu J; Zhang JW J Biol Chem; 2014 Aug; 289(33):22600-22613. PubMed ID: 24982425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]