These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3262524)

  • 1. Formation of transient polykaryons by fusion of erythrocytes of different developmental programs.
    Barker-Harrel J; McBride KA; Broyles RH
    Exp Cell Res; 1988 Oct; 178(2):435-48. PubMed ID: 3262524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemoglobin switching in Rana/Xenopus erythroid heterokaryons: factors mediating the metamorphic hemoglobin switch are conserved.
    Broyles RH; Ramseyer LT; Do TH; McBride KA; Barker JC
    Dev Genet; 1994; 15(4):347-55. PubMed ID: 7923938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemoglobin switching across vertebrate classes: exchange of developmental signals by cell fusion.
    Broyles RH; Palmer JC; Ramseyer LT; Smith DJ; Jarman RN; Do TH; McBride KA
    Prog Clin Biol Res; 1987; 251():285-94. PubMed ID: 3501587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythroid heterokaryons: a system for investigating the functional role of trans-acting factors in developmental hemoglobin switching.
    Broyles RH; Barker-Harrel J; Ramseyer LT; McBride KA; Sexton DL
    Prog Clin Biol Res; 1989; 316B():83-96. PubMed ID: 2616582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular signals for developmental hemoglobin switching.
    Ramseyer LT; Barker-Harrel J; Smith DJ; McBride KA; Jarman RN; Broyles RH
    Dev Biol; 1989 May; 133(1):262-71. PubMed ID: 2785064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of hemoglobin expression patterns in erythroid cells of Rana catesbeiana tadpoles.
    Maples PB; Palmer JC; Broyles RH
    Comp Biochem Physiol B; 1988; 91(4):755-62. PubMed ID: 3265661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic and larval hemoglobins during the early development of the bullfrog, Rana catesbeiana.
    Maples PB; Dorn AR; Broyles RH
    Dev Biol; 1983 Apr; 96(2):515-9. PubMed ID: 6601035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte differentiation during the metamorphic hemoglobin switch of Rana catesbeiana.
    Dorn AR; Broyles RH
    Proc Natl Acad Sci U S A; 1982 Sep; 79(18):5592-6. PubMed ID: 6182567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion of frog and tadpole erythrocytes.
    Rosenberg M
    Nature; 1972 Oct; 239(5374):520-2. PubMed ID: 4563023
    [No Abstract]   [Full Text] [Related]  

  • 10. Changes in the density of circulating erythrocytes of the bullfrog tadpole, Rana catesbeiana, in relation to the transition of hemoglobin during metamorphosis.
    Okazaki T; Ishihara H; Shukuya R
    Comp Biochem Physiol B; 1982; 73(2):309-12. PubMed ID: 6983417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of somatic cell fusion to reprogram globin genes.
    Broyles RH
    Semin Cell Dev Biol; 1999 Jun; 10(3):259-65. PubMed ID: 10441537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of red blood cells in vitro.
    Broyles RH; Deutsch MJ
    Science; 1975 Oct; 190(4213):471-3. PubMed ID: 1080882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in 3,5,3'-triiodothyronine (T3)-binding sites in tadpole erythrocyte nuclei during spontaneous and T3-induced metamorphosis.
    Moriya T; Thomas CR; Frieden E
    Endocrinology; 1984 Jan; 114(1):170-5. PubMed ID: 6317343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transition from tadpole to frog haemoglobin during natural amphibian metamorphosis. I. Protein synthesis by peripheral blood cells in vitro.
    Benbassat J
    J Cell Sci; 1974 Jul; 15(2):347-57. PubMed ID: 4546956
    [No Abstract]   [Full Text] [Related]  

  • 15. Hemosomegenesis and hemoglobin biosynthesis in vertebrates.
    Brunner JĂșnior A; de Rizzo E; Morena DD; Cianciarullo AM; Jared C; Morena P
    Comp Biochem Physiol Comp Physiol; 1992 Aug; 102(4):645-64. PubMed ID: 1355029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview: mechanisms of the regulation of hemoglobin synthesis at the cellular level.
    Nienhuis AW; Barker JE; Croissant RD
    Ann N Y Acad Sci; 1980; 344():189-205. PubMed ID: 6156623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of ventral and dorsal mesoderm to primitive and definitive erythropoiesis in the salamander Hynobius retardatus.
    Yamaguchi M; Wakahara M
    Dev Biol; 2001 Feb; 230(2):204-16. PubMed ID: 11161573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rana catesbeiana tadpole red blood cells express an alpha, but not a beta, c-erbA gene.
    Schneider MJ; Davey JC; Galton VA
    Endocrinology; 1993 Dec; 133(6):2488-95. PubMed ID: 8243269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Globin composition and synthesis of hemoglobins in developing fetal mice erythroid cells.
    Fantoni A; Bank A; Marks PA
    Science; 1967 Sep; 157(3794):1327-9. PubMed ID: 6039000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of the simian fetal hemoglobin switch at the progenitor cell level.
    Alter BP; Jackson BT; Lipton JM; Piasecki GJ; Jackson PL; Kudisch M; Nathan DG
    J Clin Invest; 1981 Feb; 67(2):458-66. PubMed ID: 6161945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.