These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 326255)

  • 21. Energy requirements for maltose transport in yeast.
    Serrano R
    Eur J Biochem; 1977 Oct; 80(1):97-102. PubMed ID: 21792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Properties of the 3-o-methyl-D-glucose transport system in Acholeplasma laidlawii.
    Tarshis MA; Bekkouzjin AG; Ladygina VG; Panchenko LF
    J Bacteriol; 1976 Jan; 125(1):1-7. PubMed ID: 1368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3-O-methyl-D-glucose transport in tumoral insulin-producing cells.
    Malaisse WJ; Giroix MH; Malaisse-Lagae F; Sener A
    Am J Physiol; 1986 Dec; 251(6 Pt 1):C841-6. PubMed ID: 3024495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Apparent half-lives of sugar transport proteins in Saccharomyces cerevisiae.
    Alonso A; Kotyk A
    Folia Microbiol (Praha); 1978; 23(2):118-25. PubMed ID: 348586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microcalorimetry studies of energy changes during the growth of Klebsiella aerogenes in simple salts/carbon-limited media: growth in the presence of glucose and alpha-methyl-D-glucoside.
    Nichols SC; James AM
    Microbios; 1983; 38(151):51-63. PubMed ID: 6633277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis.
    Xavier KB; Martins LO; Peist R; Kossmann M; Boos W; Santos H
    J Bacteriol; 1996 Aug; 178(16):4773-7. PubMed ID: 8759837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. COMPARISON OF THE ACTIVE TRANSPORT SYSTEMS FOR ALPHA-THIOETHYL- D-GLUCOPYRANOSIDE AND MALTOSE IN SACCHAROMYCES CEREVISIAE.
    OKADA H; HALVORSON HO
    J Bacteriol; 1963 Nov; 86(5):966-70. PubMed ID: 14080808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors influencing the formation and stability of D-glucoside 3-dehydrogenase activity in cultures of Agrobacterium tumefaciens.
    Kurowski WM; Fensom AH; Pirt SJ
    J Gen Microbiol; 1975 Oct; 90(2):191-202. PubMed ID: 1194891
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The relationship between the uptake of glucose and 3-O-methylglucose and soluble carbohydrate and polysaccharide in the fungus Dendryphiella salina.
    McDermott JC; Jennings DH
    J Gen Microbiol; 1976 Dec; 97(2):193-209. PubMed ID: 1034670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hexose transport and phosphorylation by capillaries isolated from rat brain.
    Betz AL; Csejtey J; Goldstein GW
    Am J Physiol; 1979 Jan; 236(1):C96-102. PubMed ID: 434144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6.
    Lee MD; Zentella A; Vine W; Pekala PH; Cerami A
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2590-4. PubMed ID: 3472226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulation of zero-trans rates of lactose and maltose uptake into yeasts by preincubation with hexose to increase the adenylate energy charge.
    Guimarães PM; Multanen JP; Domingues L; Teixeira JA; Londesborough J
    Appl Environ Microbiol; 2008 May; 74(10):3076-84. PubMed ID: 18378647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The putative electrogenic nitrate-proton symport of the yeast Candida utilis. Comparison with the systems absorbing glucose or lactate.
    Eddy AA; Hopkins PG
    Biochem J; 1985 Oct; 231(2):291-7. PubMed ID: 2998345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A TRANSGLUCOSYLASE OF STREPTOCOCCUS BOVIS.
    WALKER GJ
    Biochem J; 1965 Feb; 94(2):299-308. PubMed ID: 14346086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Alpha-methylglucoside transmembrane phosphorylation and regulation of the beta-galactoside permease activity in E. coli K12].
    Kalachev IIa; Gershanovich VN; Burd GI
    Biokhimiia; 1980 May; 45(5):873-82. PubMed ID: 6991004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lack of effect of intracellular sodium on phenylalanine and beta-methyl-glucoside influx into the guinea-pig enterocyte.
    Buclon M; Robinson JW; Sepúlveda FV
    J Physiol (Paris); 1979; 75(5):571-9. PubMed ID: 533874
    [No Abstract]   [Full Text] [Related]  

  • 37. Maltotriose transport and utilization in baker's and brewer's yeast.
    Michaljanicová D; Hodan J; Kotyk A
    Folia Microbiol (Praha); 1982; 27(4):217-21. PubMed ID: 6754547
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of maleic acid on the kinetics of alpha-methyl-D-glucoside uptake by isolated rat renal tubules.
    Roth KS; Hwang SM; Segal S
    Biochim Biophys Acta; 1976 Apr; 426(4):675-87. PubMed ID: 1259989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbohydrate transport in Moniliformis dubius (Acanthocephala). I. The kinetics and specificity of hexose absorption.
    Starling JA; Fisher FM
    J Parasitol; 1975 Dec; 61(6):977-90. PubMed ID: 1195077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of specific dietary sugars on the jejunal mechanisms for glucose, galactose, and alpha-methyl glucoside absorption: evidence for multiple sugar carriers.
    Debnam ES; Levin RJ
    Gut; 1976 Feb; 17(2):92-9. PubMed ID: 1261889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.