These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3262721)

  • 1. Relationships between segregated afferents and postsynaptic neurones in the optic tectum of three-eyed frogs.
    Katz LC; Constantine-Paton M
    J Neurosci; 1988 Sep; 8(9):3160-80. PubMed ID: 3262721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A light- and electron-microscopic investigation of the optic tectum of the frog, Rana pipiens, II: The neurons that give rise to the crossed tecto-bulbar pathway.
    Hughes TE
    Vis Neurosci; 1990 Jun; 4(6):519-31. PubMed ID: 2278932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pre- and postsynaptic correlates of interocular competition and segregation in the frog.
    Constantine-Paton M; Ferrari-Eastman P
    J Comp Neurol; 1987 Jan; 255(2):178-95. PubMed ID: 3493268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eye-specific segregation requires neural activity in three-eyed Rana pipiens.
    Reh TA; Constantine-Paton M
    J Neurosci; 1985 May; 5(5):1132-43. PubMed ID: 3873522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anatomy and physiology of experimentally produced striped tecta.
    Law MI; Constantine-Paton M
    J Neurosci; 1981 Jul; 1(7):741-59. PubMed ID: 6980968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA receptor agonist and antagonists alter retinal ganglion cell arbor structure in the developing frog retinotectal projection.
    Cline HT; Constantine-Paton M
    J Neurosci; 1990 Apr; 10(4):1197-216. PubMed ID: 2158526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of retinotectal synaptogenesis in normal and 3-eyed frogs: evidence for the postsynaptic regulation of synapse number.
    Norden JJ; Constantine-Paton M
    J Comp Neurol; 1994 Oct; 348(3):461-79. PubMed ID: 7844258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between dendritic fields and functional architecture in striate cortex of normal and visually deprived cats.
    Kossel A; Löwel S; Bolz J
    J Neurosci; 1995 May; 15(5 Pt 2):3913-26. PubMed ID: 7538568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic interrelationships between the optic tectum and the ipsilateral nucleus isthmi in Rana pipiens.
    Gruberg ER; Hughes TE; Karten HJ
    J Comp Neurol; 1994 Jan; 339(3):353-64. PubMed ID: 8132867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A light- and electron-microscopic investigation of the optic tectum of the frog, Rana pipiens, I: The retinal axons.
    Hughes TE
    Vis Neurosci; 1990 Jun; 4(6):499-518. PubMed ID: 2278931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo.
    Rajan I; Witte S; Cline HT
    J Neurobiol; 1999 Feb; 38(3):357-68. PubMed ID: 10022578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BDNF increases synapse density in dendrites of developing tectal neurons in vivo.
    Sanchez AL; Matthews BJ; Meynard MM; Hu B; Javed S; Cohen Cory S
    Development; 2006 Jul; 133(13):2477-86. PubMed ID: 16728478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-structural alterations and clustering of developing synapses after chronic treatments with low levels of NMDA.
    Yen LH; Sibley JT; Constantine-Paton M
    J Neurosci; 1993 Nov; 13(11):4949-60. PubMed ID: 8229207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastructural evidence of the formation of synapses by retinal ganglion cell axons in two nonstandard targets.
    Cantore WA; Scalia F
    J Comp Neurol; 1987 Jul; 261(1):137-47. PubMed ID: 3497955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study.
    Titmus MJ; Tsai HJ; Lima R; Udin SB
    Neuroscience; 1999; 91(2):753-69. PubMed ID: 10366031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye-specific termination bands in tecta of three-eyed frogs.
    Constantine-Paton M; Law MI
    Science; 1978 Nov; 202(4368):639-41. PubMed ID: 309179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between tectal radial cells in the red-eared turtle, Pseudemys scripta elegans: an analysis of tectal modules.
    Schechter PB; Ulinski PS
    J Morphol; 1979 Oct; 162(1):17-36. PubMed ID: 228046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synapses of optic axons with GABA- and glutamate-containing elements in the optic tectum of Bufo marinus.
    Gábriel R; Straznicky C
    J Hirnforsch; 1995; 36(3):329-40. PubMed ID: 7560905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.