These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32627275)

  • 1. Phosphorothioate Modification of mRNA Accelerates the Rate of Translation Initiation to Provide More Efficient Protein Synthesis.
    Kawaguchi D; Kodama A; Abe N; Takebuchi K; Hashiya F; Tomoike F; Nakamoto K; Kimura Y; Shimizu Y; Abe H
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17403-17407. PubMed ID: 32627275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Study of the ribosome mRNA-binding region during different stages of translation. I. Functional activity of mRNA analogs, AUGU6 and its benzylidene derivatives, in ribosome-dependent protein synthesis].
    Babkina GT; Karpova GG; Berzin' VA; Gren EIa; Tsielens IE
    Bioorg Khim; 1983 Nov; 9(11):1535-43. PubMed ID: 6385995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the translation initiation of leaderless mRNAs by the intact 70 S ribosome without its dissociation into subunits in eubacteria.
    Udagawa T; Shimizu Y; Ueda T
    J Biol Chem; 2004 Mar; 279(10):8539-46. PubMed ID: 14670970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A second putative mRNA binding site on the Escherichia coli ribosome.
    Ivanov IG; Alexandrova RA; Dragulev BP; AbouHaidar MG
    Gene; 1995 Jul; 160(1):75-9. PubMed ID: 7628721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the accessibility and selection of the initiator site of mRNA in protein synthesis.
    Nakamoto T; Vogl B
    Biochim Biophys Acta; 1978 Feb; 517(2):367-77. PubMed ID: 341982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How ribosomes select initiator regions in mRNA: base pair formation between the 3' terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli.
    Steitz JA; Jakes K
    Proc Natl Acad Sci U S A; 1975 Dec; 72(12):4734-8. PubMed ID: 1107998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Cyclization of Eukaryotic mRNAs.
    Alekhina OM; Terenin IM; Dmitriev SE; Vassilenko KS
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32121426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorothioate-containing RNAs show mRNA activity in the prokaryotic translation systems in vitro.
    Ueda T; Tohda H; Chikazumi N; Eckstein F; Watanabe K
    Nucleic Acids Res; 1991 Feb; 19(3):547-52. PubMed ID: 2011526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of mRNA with the Escherichia coli ribosome: accessibility of phosphorothioate-containing mRNA bound to ribosomes for iodine cleavage.
    Alexeeva EV; Shpanchenko OV; Dontsova OA; Bogdanov AA; Nierhaus KH
    Nucleic Acids Res; 1996 Jun; 24(12):2228-35. PubMed ID: 8710490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome scale analysis of Escherichia coli with a comprehensive prokaryotic sequence-based biophysical model of translation initiation and elongation.
    Shaham G; Tuller T
    DNA Res; 2018 Apr; 25(2):195-205. PubMed ID: 29161365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Naturally occurring adenines within mRNA coding sequences affect ribosome binding and expression in Escherichia coli.
    Brock JE; Paz RL; Cottle P; Janssen GR
    J Bacteriol; 2007 Jan; 189(2):501-10. PubMed ID: 17085569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative translation initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving the p57/PTB splicing factor.
    Vagner S; Waysbort A; Marenda M; Gensac MC; Amalric F; Prats AC
    J Biol Chem; 1995 Sep; 270(35):20376-83. PubMed ID: 7657611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding on the ribosome depends on the structure of the mRNA phosphodiester backbone.
    Keedy HE; Thomas EN; Zaher HS
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6731-E6740. PubMed ID: 29967153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of mRNA Structure Rearrangement to Ribosome Movement during Bypassing of Non-coding Regions.
    Chen J; Coakley A; O'Connor M; Petrov A; O'Leary SE; Atkins JF; Puglisi JD
    Cell; 2015 Nov; 163(5):1267-1280. PubMed ID: 26590426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribosome collisions and translation efficiency: optimization by codon usage and mRNA destabilization.
    Mitarai N; Sneppen K; Pedersen S
    J Mol Biol; 2008 Sep; 382(1):236-45. PubMed ID: 18619977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosome-binding sites on chloroplast rbcL and psbA mRNAs and light-induced initiation of D1 translation.
    Kim J; Mullet JE
    Plant Mol Biol; 1994 Jun; 25(3):437-48. PubMed ID: 8049369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA.
    Hartz D; McPheeters DS; Green L; Gold L
    J Mol Biol; 1991 Mar; 218(1):99-105. PubMed ID: 2002510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome.
    Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP
    Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How the initiating ribosome copes with ppGpp to translate mRNAs.
    Vinogradova DS; Zegarra V; Maksimova E; Nakamoto JA; Kasatsky P; Paleskava A; Konevega AL; Milón P
    PLoS Biol; 2020 Jan; 18(1):e3000593. PubMed ID: 31995552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.