These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32627341)

  • 1. Near-Infrared Manipulation of Membrane Ion Channels via Upconversion Optogenetics.
    Wang Z; Hu M; Ai X; Zhang Z; Xing B
    Adv Biosyst; 2019 Jan; 3(1):e1800233. PubMed ID: 32627341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of upconversion nanoparticles in cellular optogenetics.
    Lin Y; Yao Y; Zhang W; Fang Q; Zhang L; Zhang Y; Xu Y
    Acta Biomater; 2021 Nov; 135():1-12. PubMed ID: 34461347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics.
    Chen S; Weitemier AZ; Zeng X; He L; Wang X; Tao Y; Huang AJY; Hashimotodani Y; Kano M; Iwasaki H; Parajuli LK; Okabe S; Teh DBL; All AH; Tsutsui-Kimura I; Tanaka KF; Liu X; McHugh TJ
    Science; 2018 Feb; 359(6376):679-684. PubMed ID: 29439241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-Infrared-Light Activatable Nanoparticles for Deep-Tissue-Penetrating Wireless Optogenetics.
    Yu N; Huang L; Zhou Y; Xue T; Chen Z; Han G
    Adv Healthc Mater; 2019 Mar; 8(6):e1801132. PubMed ID: 30633858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach.
    Chen S; Wu J; Cai A; Gonzalez N; Yin R
    Neurosci Res; 2020 Mar; 152():59-65. PubMed ID: 31987879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed Optogenetic Stimulation of Neurons with Spectrum-Selective Upconversion Nanoparticles.
    Lin X; Wang Y; Chen X; Yang R; Wang Z; Feng J; Wang H; Lai KWC; He J; Wang F; Shi P
    Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28795515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upconversion Nanoparticle-Mediated Optogenetics.
    Yi Z; All AH; Liu X
    Adv Exp Med Biol; 2021; 1293():641-657. PubMed ID: 33398847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications.
    Wu X; Zhang Y; Takle K; Bilsel O; Li Z; Lee H; Zhang Z; Li D; Fan W; Duan C; Chan EM; Lois C; Xiang Y; Han G
    ACS Nano; 2016 Jan; 10(1):1060-6. PubMed ID: 26736013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-Continuous Wave Near-Infrared Excitation of Upconversion Nanoparticles for Optogenetic Manipulation of C. elegans.
    Bansal A; Liu H; Jayakumar MK; Andersson-Engels S; Zhang Y
    Small; 2016 Apr; 12(13):1732-43. PubMed ID: 26849846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy Flux Manipulation in Upconversion Nanosystems.
    Liang L; Qin X; Zheng K; Liu X
    Acc Chem Res; 2019 Jan; 52(1):228-236. PubMed ID: 30557000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals.
    Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P
    Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy.
    Zheng B; Wang H; Pan H; Liang C; Ji W; Zhao L; Chen H; Gong X; Wu X; Chang J
    ACS Nano; 2017 Dec; 11(12):11898-11907. PubMed ID: 29064662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Calcium Ion Influx in Myoblasts and Myotubes by Near-Infrared Light Using Upconversion Nanoparticles.
    Maemura D; Le TS; Takahashi M; Matsumura K; Maenosono S
    ACS Appl Mater Interfaces; 2023 Sep; 15(36):42196-42208. PubMed ID: 37652433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An upconversion nanoparticle-integrated fibrillar scaffold combined with a NIR-optogenetic strategy to regulate neural cell performance.
    Wu C; Su B; Xin N; Tang J; Xiao J; Luo H; Wei D; Luo F; Sun J; Fan H
    J Mater Chem B; 2023 Jan; 11(2):430-440. PubMed ID: 36524427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the Toolbox of Upconversion Nanoparticles for In Vivo Optogenetics and Neuromodulation.
    All AH; Zeng X; Teh DBL; Yi Z; Prasad A; Ishizuka T; Thakor N; Hiromu Y; Liu X
    Adv Mater; 2019 Oct; 31(41):e1803474. PubMed ID: 31432555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared light remotely up-regulate autophagy with spatiotemporal precision via upconversion optogenetic nanosystem.
    Pan H; Wang H; Yu J; Huang X; Hao Y; Zhang C; Ji W; Yang M; Gong X; Wu X; Chang J
    Biomaterials; 2019 Apr; 199():22-31. PubMed ID: 30735893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic approaches to control Ca
    Nguyen NT; Ma G; Zhou Y; Jing J
    Curr Opin Physiol; 2020 Oct; 17():187-196. PubMed ID: 33184610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for near-infrared optogenetics manipulation of neurons and motor behavior in C. elegans using emissive upconversion nanoparticles.
    Wang R; Guo J; Yao H; Luo X; Deng Y; Tian Y; Zhang Y; Gao S
    STAR Protoc; 2024 Mar; 5(1):102858. PubMed ID: 38294907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Upconversion Nanoparticle Enables Near Infrared-Optogenetic Manipulation of the Caenorhabditis elegans Motor Circuit.
    Ao Y; Zeng K; Yu B; Miao Y; Hung W; Yu Z; Xue Y; Tan TTY; Xu T; Zhen M; Yang X; Zhang Y; Gao S
    ACS Nano; 2019 Mar; 13(3):3373-3386. PubMed ID: 30681836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid upconversion nanomaterials for optogenetic neuronal control.
    Shah S; Liu JJ; Pasquale N; Lai J; McGowan H; Pang ZP; Lee KB
    Nanoscale; 2015 Oct; 7(40):16571-7. PubMed ID: 26415758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.