These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32627341)

  • 21. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices.
    Wang Y; Lin X; Chen X; Chen X; Xu Z; Zhang W; Liao Q; Duan X; Wang X; Liu M; Wang F; He J; Shi P
    Biomaterials; 2017 Oct; 142():136-148. PubMed ID: 28735174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-infrared light driven tissue-penetrating cardiac optogenetics via upconversion nanoparticles in vivo.
    Rao P; Wang L; Cheng Y; Wang X; Li H; Zheng G; Li Z; Jiang C; Zhou Q; Huang C
    Biomed Opt Express; 2020 Mar; 11(3):1401-1416. PubMed ID: 32206418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-infrared manipulation of multiple neuronal populations via trichromatic upconversion.
    Liu X; Chen H; Wang Y; Si Y; Zhang H; Li X; Zhang Z; Yan B; Jiang S; Wang F; Weng S; Xu W; Zhao D; Zhang J; Zhang F
    Nat Commun; 2021 Sep; 12(1):5662. PubMed ID: 34580314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-Shell-Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition.
    Lin X; Chen X; Zhang W; Sun T; Fang P; Liao Q; Chen X; He J; Liu M; Wang F; Shi P
    Nano Lett; 2018 Feb; 18(2):948-956. PubMed ID: 29278506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection.
    Su Q; Feng W; Yang D; Li F
    Acc Chem Res; 2017 Jan; 50(1):32-40. PubMed ID: 27983801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-infrared Deep Brain Stimulation in Living Mice.
    Chen S
    Methods Mol Biol; 2020; 2173():71-82. PubMed ID: 32651910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-infrared photocontrolled therapeutic release via upconversion nanocomposites.
    Wang Z; Thang DC; Han Q; Zhao X; Xie X; Wang Z; Lin J; Xing B
    J Control Release; 2020 Aug; 324():104-123. PubMed ID: 32423873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeted and efficient activation of channelrhodopsins expressed in living cells via specifically-bound upconversion nanoparticles.
    Yadav K; Chou AC; Ulaganathan RK; Gao HD; Lee HM; Pan CY; Chen YT
    Nanoscale; 2017 Jul; 9(27):9457-9466. PubMed ID: 28660935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remote Control of Neural Stem Cell Fate Using NIR-Responsive Photoswitching Upconversion Nanoparticle Constructs.
    Zhang Y; Wiesholler LM; Rabie H; Jiang P; Lai J; Hirsch T; Lee KB
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40031-40041. PubMed ID: 32805826
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Near-Infrared Activation of Sensory Rhodopsin II Mediated by NIR-to-Blue Upconversion Nanoparticles.
    Yaguchi M; Jia X; Schlesinger R; Jiang X; Ataka K; Heberle J
    Front Mol Biosci; 2021; 8():782688. PubMed ID: 35252344
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lanthanide-Doped Nanoparticles for Near-Infrared Light Activation of Photopolymerization: Fundamentals, Optimization and Applications.
    Li Q; Yuan S; Liu F; Zhu X; Liu J
    Chem Rec; 2021 Jul; 21(7):1681-1696. PubMed ID: 34145731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep-penetrating photodynamic therapy with KillerRed mediated by upconversion nanoparticles.
    Liang L; Lu Y; Zhang R; Care A; Ortega TA; Deyev SM; Qian Y; Zvyagin AV
    Acta Biomater; 2017 Mar; 51():461-470. PubMed ID: 28063989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhodopsin-Based Optogenetics: Basics and Applications.
    Alekseev A; Gordeliy V; Bamberg E
    Methods Mol Biol; 2022; 2501():71-100. PubMed ID: 35857223
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tether-free optogenetic control of insulin secretion using an upconversion nanoparticle-doped hydrogel platform.
    Bansal A; Zhang J; Lu Q; Mei Q; Zhang Y
    Biomater Sci; 2023 Mar; 11(6):2046-2055. PubMed ID: 36723390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetic Modulation of Ion Channels by Photoreceptive Proteins.
    Tsukamoto H; Furutani Y
    Adv Exp Med Biol; 2021; 1293():73-88. PubMed ID: 33398808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Upconversion Nanoparticles-Based Multiplex Protein Activation to Neuron Ablation for Locomotion Regulation.
    Zhang Y; Zhang W; Zeng K; Ao Y; Wang M; Yu Z; Qi F; Yu W; Mao H; Tao L; Zhang C; Tan TTY; Yang X; Pu K; Gao S
    Small; 2020 Feb; 16(8):e1906797. PubMed ID: 32003923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bidirectional near-infrared regulation of motor behavior using orthogonal emissive upconversion nanoparticles.
    Guo J; Chen L; Xiong F; Zhang Y; Wang R; Zhang X; Wen Q; Gao S; Zhang Y
    Nanoscale; 2023 May; 15(17):7845-7853. PubMed ID: 37057392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remote Regulation of Membrane Channel Activity by Site-Specific Localization of Lanthanide-Doped Upconversion Nanocrystals.
    Ai X; Lyu L; Zhang Y; Tang Y; Mu J; Liu F; Zhou Y; Zuo Z; Liu G; Xing B
    Angew Chem Int Ed Engl; 2017 Mar; 56(11):3031-3035. PubMed ID: 28157258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-invasive tracking of hydrogel degradation using upconversion nanoparticles.
    Dong Y; Jin G; Ji C; He R; Lin M; Zhao X; Li A; Lu TJ; Xu F
    Acta Biomater; 2017 Jun; 55():410-419. PubMed ID: 28428038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near-Infrared Optogenetic Genome Engineering Based on Photon-Upconversion Hydrogels.
    Sasaki Y; Oshikawa M; Bharmoria P; Kouno H; Hayashi-Takagi A; Sato M; Ajioka I; Yanai N; Kimizuka N
    Angew Chem Int Ed Engl; 2019 Dec; 58(49):17827-17833. PubMed ID: 31544993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.