These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32627377)

  • 1. An Electrocorticography Device with an Integrated Microfluidic Ion Pump for Simultaneous Neural Recording and Electrophoretic Drug Delivery In Vivo.
    Proctor CM; Uguz I; Slezia A; Curto V; Inal S; Williamson A; Malliaras GG
    Adv Biosyst; 2019 Feb; 3(2):e1800270. PubMed ID: 32627377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Microfluidic Ion Pump for In Vivo Drug Delivery.
    Uguz I; Proctor CM; Curto VF; Pappa AM; Donahue MJ; Ferro M; Owens RM; Khodagholy D; Inal S; Malliaras GG
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28503731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophoretic Delivery of γ-aminobutyric Acid (GABA) into Epileptic Focus Prevents Seizures in Mice.
    Slezia A; Proctor CM; Kaszas A; Malliaras GG; Williamson A
    J Vis Exp; 2019 May; (147):. PubMed ID: 31157762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoretic drug delivery for seizure control.
    Proctor CM; Slézia A; Kaszas A; Ghestem A; Del Agua I; Pappa AM; Bernard C; Williamson A; Malliaras GG
    Sci Adv; 2018 Aug; 4(8):eaau1291. PubMed ID: 30167463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive tasks and human ambulatory electrocorticography using the RNS System.
    Meisenhelter S; Testorf ME; Gorenstein MA; Hasulak NR; Tcheng TK; Aronson JP; Jobst BC
    J Neurosci Methods; 2019 Jan; 311():408-417. PubMed ID: 30267724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo performance of a microelectrode neural probe with integrated drug delivery.
    Rohatgi P; Langhals NB; Kipke DR; Patil PG
    Neurosurg Focus; 2009 Jul; 27(1):E8. PubMed ID: 19569896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel micro-ECoG recording method for recording multisensory neural activity from the parietal to temporal cortices in mice.
    Setogawa S; Kanda R; Tada S; Hikima T; Saitoh Y; Ishikawa M; Nakada S; Seki F; Hikishima K; Matsumoto H; Mizuseki K; Fukayama O; Osanai M; Sekiguchi H; Ohkawa N
    Mol Brain; 2023 May; 16(1):38. PubMed ID: 37138338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioresorbable Electrode Array for Electrophysiological and Pressure Signal Recording in the Brain.
    Xu K; Li S; Dong S; Zhang S; Pan G; Wang G; Shi L; Guo W; Yu C; Luo J
    Adv Healthc Mater; 2019 Aug; 8(15):e1801649. PubMed ID: 31168937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic electronics for high-resolution electrocorticography of the human brain.
    Khodagholy D; Gelinas JN; Zhao Z; Yeh M; Long M; Greenlee JD; Doyle W; Devinsky O; Buzsáki G
    Sci Adv; 2016 Nov; 2(11):e1601027. PubMed ID: 28861464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous on-chip micropumping for microneedle enhanced drug delivery.
    Zahn JD; Deshmukh A; Pisano AP; Liepmann D
    Biomed Microdevices; 2004 Sep; 6(3):183-90. PubMed ID: 15377827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Closed-Loop Optogenetic Brain Interface.
    Pashaie R; Baumgartner R; Richner TJ; Brodnick SK; Azimipour M; Eliceiri KW; Williams JC
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2327-37. PubMed ID: 26011877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible microfluidic devices supported by biodegradable insertion scaffolds for convection-enhanced neural drug delivery.
    Foley CP; Nishimura N; Neeves KB; Schaffer CB; Olbricht WL
    Biomed Microdevices; 2009 Aug; 11(4):915-24. PubMed ID: 19353271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI-Compatible and Conformal Electrocorticography Grids for Translational Research.
    Fallegger F; Schiavone G; Pirondini E; Wagner FB; Vachicouras N; Serex L; Zegarek G; May A; Constanthin P; Palma M; Khoshnevis M; Van Roost D; Yvert B; Courtine G; Schaller K; Bloch J; Lacour SP
    Adv Sci (Weinh); 2021 May; 8(9):2003761. PubMed ID: 33977054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic neural probes: in vivo tools for advancing neuroscience.
    Sim JY; Haney MP; Park SI; McCall JG; Jeong JW
    Lab Chip; 2017 Apr; 17(8):1406-1435. PubMed ID: 28349140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantable Multi-Modality Probe for Subdural Simultaneous Measurement of Electrophysiology, Hemodynamics, and Temperature Distribution.
    Yamakawa T; Inoue T; Niwayama M; Oka F; Imoto H; Nomura S; Suzuki M
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3204-3211. PubMed ID: 30835208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sample injection and electrophoretic separation on a simple laminated paper based analytical device.
    Xu C; Zhong M; Cai L; Zheng Q; Zhang X
    Electrophoresis; 2016 Feb; 37(3):476-81. PubMed ID: 26542435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-voltage electrokinetic nanochannel drug delivery system.
    Fine D; Grattoni A; Zabre E; Hussein F; Ferrari M; Liu X
    Lab Chip; 2011 Aug; 11(15):2526-34. PubMed ID: 21677944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multichannel neural probe with embedded microfluidic channels for simultaneous in vivo neural recording and drug delivery.
    Lee HJ; Son Y; Kim J; Lee CJ; Yoon ES; Cho IJ
    Lab Chip; 2015 Mar; 15(6):1590-7. PubMed ID: 25651943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical delivery array with millisecond neurotransmitter release.
    Jonsson A; Sjöström TA; Tybrandt K; Berggren M; Simon DT
    Sci Adv; 2016 Nov; 2(11):e1601340. PubMed ID: 27847873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo evaluation of a μECoG array for chronic stimulation.
    Lycke RJ; Schendel A; Williams JC; Otto KJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1294-7. PubMed ID: 25570203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.