BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 32627388)

  • 21. Functions of Linear Ubiquitin Chains in the NF-κB Pathway : Linear Polyubiquitin in NF-κB Signaling.
    Iwai K
    Subcell Biochem; 2010; 54():100-6. PubMed ID: 21222276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation.
    de Jong MF; Liu Z; Chen D; Alto NM
    Nat Microbiol; 2016 May; 1(7):16084. PubMed ID: 27572974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Linear Ubiquitination Mediates EGFR-Induced NF-κB Pathway and Tumor Development.
    Hua F; Hao W; Wang L; Li S
    Int J Mol Sci; 2021 Nov; 22(21):. PubMed ID: 34769306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular and Mathematical Analyses of LUBAC Involvement in T Cell Receptor-Mediated NF-κB Activation Pathway.
    Oikawa D; Hatanaka N; Suzuki T; Tokunaga F
    Front Immunol; 2020; 11():601926. PubMed ID: 33329596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of Linear Ubiquitination in Health and Disease.
    Brazee P; Dada LA; Sznajder JI
    Am J Respir Cell Mol Biol; 2016 Jun; 54(6):761-8. PubMed ID: 26848516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of linear ubiquitination in inflammatory responses and tissue homeostasis.
    Sasaki K; Iwai K
    Int Immunol; 2023 Jan; 35(1):19-25. PubMed ID: 36149813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer.
    Walczak H
    Immunol Rev; 2011 Nov; 244(1):9-28. PubMed ID: 22017428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms underlying linear ubiquitination and implications in tumorigenesis and drug discovery.
    Li J; Liu S; Li S
    Cell Commun Signal; 2023 Nov; 21(1):340. PubMed ID: 38017534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Linear ubiquitination in NF-κB signaling and inflammation: What we do understand and what we do not.
    Verhelst K; Verstrepen L; Carpentier I; Beyaert R
    Biochem Pharmacol; 2011 Nov; 82(9):1057-65. PubMed ID: 21787758
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN.
    Takiuchi T; Nakagawa T; Tamiya H; Fujita H; Sasaki Y; Saeki Y; Takeda H; Sawasaki T; Buchberger A; Kimura T; Iwai K
    Genes Cells; 2014 Mar; 19(3):254-72. PubMed ID: 24461064
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structures, functions, and inhibitors of LUBAC and its related diseases.
    Ning S; Luo L; Yu B; Mai D; Wang F
    J Leukoc Biol; 2022 Oct; 112(4):799-811. PubMed ID: 35266190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gliotoxin suppresses NF-κB activation by selectively inhibiting linear ubiquitin chain assembly complex (LUBAC).
    Sakamoto H; Egashira S; Saito N; Kirisako T; Miller S; Sasaki Y; Matsumoto T; Shimonishi M; Komatsu T; Terai T; Ueno T; Hanaoka K; Kojima H; Okabe T; Wakatsuki S; Iwai K; Nagano T
    ACS Chem Biol; 2015 Mar; 10(3):675-81. PubMed ID: 25494483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TLRs Go Linear - On the Ubiquitin Edge.
    Zinngrebe J; Walczak H
    Trends Mol Med; 2017 Apr; 23(4):296-309. PubMed ID: 28325627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MALT1-Dependent Cleavage of HOIL1 Modulates Canonical NF-κB Signaling and Inflammatory Responsiveness.
    Fung SY; Lu HY; Sharma M; Sharma AA; Saferali A; Jia A; Abraham L; Klein T; Gold MR; Noterangelo LD; Overall CM; Turvey SE
    Front Immunol; 2021; 12():749794. PubMed ID: 34721419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decreased linear ubiquitination of NEMO and FADD on apoptosis with caspase-mediated cleavage of HOIP.
    Goto E; Tokunaga F
    Biochem Biophys Res Commun; 2017 Mar; 485(1):152-159. PubMed ID: 28189684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The E3 ubiquitin ligase MIB2 enhances inflammation by degrading the deubiquitinating enzyme CYLD.
    Uematsu A; Kido K; Takahashi H; Takahashi C; Yanagihara Y; Saeki N; Yoshida S; Maekawa M; Honda M; Kai T; Shimizu K; Higashiyama S; Imai Y; Tokunaga F; Sawasaki T
    J Biol Chem; 2019 Sep; 294(38):14135-14148. PubMed ID: 31366726
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research progress in linear ubiquitin modification.
    He S; Zhang LQ
    Yi Chuan; 2015 Sep; 37(9):911-7. PubMed ID: 26399530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Met1-linked ubiquitin machinery in inflammation and infection.
    Fiil BK; Gyrd-Hansen M
    Cell Death Differ; 2021 Feb; 28(2):557-569. PubMed ID: 33473179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LUBAC-mediated linear ubiquitination in tissue homeostasis and disease.
    Sasaki K; Iwai K
    J Biochem; 2023 Jul; 174(2):99-107. PubMed ID: 37279649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crosstalk Between NDP52 and LUBAC in Innate Immune Responses, Cell Death, and Xenophagy.
    Miyashita H; Oikawa D; Terawaki S; Kabata D; Shintani A; Tokunaga F
    Front Immunol; 2021; 12():635475. PubMed ID: 33815386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.