These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32627388)

  • 41. Crosstalk Between NDP52 and LUBAC in Innate Immune Responses, Cell Death, and Xenophagy.
    Miyashita H; Oikawa D; Terawaki S; Kabata D; Shintani A; Tokunaga F
    Front Immunol; 2021; 12():635475. PubMed ID: 33815386
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The mechanism of linear ubiquitination in regulating cell death and correlative diseases.
    Gao L; Zhang W; Shi XH; Chang X; Han Y; Liu C; Jiang Z; Yang X
    Cell Death Dis; 2023 Oct; 14(10):659. PubMed ID: 37813853
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling.
    Klein T; Fung SY; Renner F; Blank MA; Dufour A; Kang S; Bolger-Munro M; Scurll JM; Priatel JJ; Schweigler P; Melkko S; Gold MR; Viner RI; Régnier CH; Turvey SE; Overall CM
    Nat Commun; 2015 Nov; 6():8777. PubMed ID: 26525107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The E3 ubiquitin ligases HOIP and cIAP1 are recruited to the TNFR2 signaling complex and mediate TNFR2-induced canonical NF-κB signaling.
    Borghi A; Haegman M; Fischer R; Carpentier I; Bertrand MJM; Libert C; Afonina IS; Beyaert R
    Biochem Pharmacol; 2018 Jul; 153():292-298. PubMed ID: 29378181
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Linear ubiquitin chains: enzymes, mechanisms and biology.
    Rittinger K; Ikeda F
    Open Biol; 2017 Apr; 7(4):. PubMed ID: 28446710
    [TBL] [Abstract][Full Text] [Related]  

  • 46. LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB.
    Noad J; von der Malsburg A; Pathe C; Michel MA; Komander D; Randow F
    Nat Microbiol; 2017 May; 2():17063. PubMed ID: 28481331
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The emerging role of linear ubiquitination in cell signaling.
    Emmerich CH; Schmukle AC; Walczak H
    Sci Signal; 2011 Dec; 4(204):re5. PubMed ID: 22375051
    [TBL] [Abstract][Full Text] [Related]  

  • 48. MyD88-Dependent Signaling Is Required for HOIP Deficiency-Induced Autoinflammation.
    Wu X; Tang Y; Zhang S; Zhao X; Lin X
    J Immunol; 2021 Jul; 207(2):542-554. PubMed ID: 34253576
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The LUBAC participates in lysophosphatidic acid-induced NF-κB activation.
    Douanne T; Chapelier S; Rottapel R; Gavard J; Bidère N
    Cell Immunol; 2020 Jul; 353():104133. PubMed ID: 32450431
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MST1 Negatively Regulates TNFα-Induced NF-κB Signaling through Modulating LUBAC Activity.
    Lee IY; Lim JM; Cho H; Kim E; Kim Y; Oh HK; Yang WS; Roh KH; Park HW; Mo JS; Yoon JH; Song HK; Choi EJ
    Mol Cell; 2019 Mar; 73(6):1138-1149.e6. PubMed ID: 30901564
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Diverse roles of the ubiquitin system in NF-κB activation.
    Iwai K
    Biochim Biophys Acta; 2014 Jan; 1843(1):129-36. PubMed ID: 23523932
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reciprocal interplay between OTULIN-LUBAC determines genotoxic and inflammatory NF-κB signal responses.
    Li M; Li L; Asemota S; Kakhniashvili D; Narayanan R; Wang X; Liao FF
    Proc Natl Acad Sci U S A; 2022 Aug; 119(33):e2123097119. PubMed ID: 35939695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MALT1 cleaves the E3 ubiquitin ligase HOIL-1 in activated T cells, generating a dominant negative inhibitor of LUBAC-induced NF-κB signaling.
    Elton L; Carpentier I; Staal J; Driege Y; Haegman M; Beyaert R
    FEBS J; 2016 Feb; 283(3):403-12. PubMed ID: 26573773
    [TBL] [Abstract][Full Text] [Related]  

  • 54. --LUBAC deficiency perturbs TLR3 signaling to cause immunodeficiency and autoinflammation.
    Zinngrebe J; Rieser E; Taraborrelli L; Peltzer N; Hartwig T; Ren H; Kovács I; Endres C; Draber P; Darding M; von Karstedt S; Lemke J; Dome B; Bergmann M; Ferguson BJ; Walczak H
    J Exp Med; 2016 Nov; 213(12):2671-2689. PubMed ID: 27810922
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural basis for the simultaneous recognition of NEMO and acceptor ubiquitin by the HOIP NZF1 domain.
    Rahighi S; Iyer M; Oveisi H; Nasser S; Duong V
    Sci Rep; 2022 Jul; 12(1):12241. PubMed ID: 35851409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biophysical and biological evaluation of optimized stapled peptide inhibitors of the linear ubiquitin chain assembly complex (LUBAC).
    Aguilar-Alonso F; Whiting AL; Kim YJ; Bernal F
    Bioorg Med Chem; 2018 Mar; 26(6):1179-1188. PubMed ID: 29246782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets.
    Kasirer-Friede A; Tjahjono W; Eto K; Shattil SJ
    Proc Natl Acad Sci U S A; 2019 Mar; 116(11):4983-4988. PubMed ID: 30804189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Linear ubiquitination-mediated NF-κB regulation and its related diseases].
    Tokunaga F
    Seikagaku; 2013 Jun; 85(6):414-22. PubMed ID: 23875468
    [No Abstract]   [Full Text] [Related]  

  • 59. The Met1-Linked Ubiquitin Machinery: Emerging Themes of (De)regulation.
    Hrdinka M; Gyrd-Hansen M
    Mol Cell; 2017 Oct; 68(2):265-280. PubMed ID: 29053955
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells.
    Sasaki Y; Sano S; Nakahara M; Murata S; Kometani K; Aiba Y; Sakamoto S; Watanabe Y; Tanaka K; Kurosaki T; Iwai K
    EMBO J; 2013 Sep; 32(18):2463-76. PubMed ID: 23942237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.