These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32627428)

  • 21. Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators.
    Lu X; Shen Y; Campbell RE
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32906617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light Control of the Tet Gene Expression System in Mammalian Cells.
    Yamada M; Suzuki Y; Nagasaki SC; Okuno H; Imayoshi I
    Cell Rep; 2018 Oct; 25(2):487-500.e6. PubMed ID: 30304687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. OpEn-Tag-A Customizable Optogenetic Toolbox To Dissect Subcellular Signaling.
    Mühlhäuser WWD; Weber W; Radziwill G
    ACS Synth Biol; 2019 Jul; 8(7):1679-1684. PubMed ID: 31185174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
    Valon L; Etoc F; Remorino A; di Pietro F; Morin X; Dahan M; Coppey M
    Biophys J; 2015 Nov; 109(9):1785-97. PubMed ID: 26536256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal control of fibroblast growth factor receptor signals by blue light.
    Kim N; Kim JM; Lee M; Kim CY; Chang KY; Heo WD
    Chem Biol; 2014 Jul; 21(7):903-12. PubMed ID: 24981772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optogenetic control of focal adhesion kinase signaling.
    Hörner M; Chatelle C; Mühlhäuser WWD; Stocker DR; Coats M; Weber W; Radziwill G
    Cell Signal; 2018 Jan; 42():176-183. PubMed ID: 29074139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.
    Kramer MM; Lataster L; Weber W; Radziwill G
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable and Photoswitchable Chemically Induced Dimerization for Chemo-optogenetic Control of Protein and Organelle Positioning.
    Chen X; Wu YW
    Angew Chem Int Ed Engl; 2018 Jun; 57(23):6796-6799. PubMed ID: 29637703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae.
    An-Adirekkun JM; Stewart CJ; Geller SH; Patel MT; Melendez J; Oakes BL; Noyes MB; McClean MN
    Biotechnol Bioeng; 2020 Mar; 117(3):886-893. PubMed ID: 31788779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CL6mN: Rationally Designed Optogenetic Photoswitches with Tunable Dissociation Dynamics.
    Mukherjee A; Sudrik C; Hu Y; Arha M; Stathos M; Baek J; Schaffer DV; Kane RS
    ACS Synth Biol; 2020 Sep; 9(9):2274-2281. PubMed ID: 32794731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding CRY2 interactions for optical control of intracellular signaling.
    Duan L; Hope J; Ong Q; Lou HY; Kim N; McCarthy C; Acero V; Lin MZ; Cui B
    Nat Commun; 2017 Sep; 8(1):547. PubMed ID: 28916751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized light-inducible transcription in mammalian cells using Flavin Kelch-repeat F-box1/GIGANTEA and CRY2/CIB1.
    Quejada JR; Park SE; Awari DW; Shi F; Yamamoto HE; Kawano F; Jung JC; Yazawa M
    Nucleic Acids Res; 2017 Nov; 45(20):e172. PubMed ID: 29040770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling.
    Ma G; He L; Liu S; Xie J; Huang Z; Jing J; Lee YT; Wang R; Luo H; Han W; Huang Y; Zhou Y
    Nat Commun; 2020 Feb; 11(1):1039. PubMed ID: 32098964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering.
    Bugaj LJ; Spelke DP; Mesuda CK; Varedi M; Kane RS; Schaffer DV
    Nat Commun; 2015 Apr; 6():6898. PubMed ID: 25902152
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Different response modes and cooperation modulations of blue-light receptors in photomorphogenesis.
    Wu Y; Wang Q; Qu J; Liu W; Gao X; Li X; Ouyang X; Lin C; Shuai J
    Plant Cell Environ; 2021 Jun; 44(6):1802-1815. PubMed ID: 33665849
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light-Regulated Protein Kinases Based on the CRY2-CIB1 System.
    Mühlhäuser WW; Hörner M; Weber W; Radziwill G
    Methods Mol Biol; 2017; 1596():257-270. PubMed ID: 28293892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetic control of molecular motors and organelle distributions in cells.
    Duan L; Che D; Zhang K; Ong Q; Guo S; Cui B
    Chem Biol; 2015 May; 22(5):671-82. PubMed ID: 25963241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design, construction, and validation of optogenetic proteins.
    O'Banion CP; Goswami A; Lawrence DS
    Methods Enzymol; 2019; 621():171-190. PubMed ID: 31128778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photo-ECM: A Blue Light Photoswitchable Synthetic Extracellular Matrix Protein for Reversible Control over Cell-Matrix Adhesion.
    Ricken J; Medda R; Wegner SV
    Adv Biosyst; 2019 Mar; 3(3):e1800302. PubMed ID: 32627396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optogenetic control of phosphoinositide metabolism.
    Idevall-Hagren O; Dickson EJ; Hille B; Toomre DK; De Camilli P
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):E2316-23. PubMed ID: 22847441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.