These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Boosting Output Performance of Sliding Mode Triboelectric Nanogenerator by Shielding Layer and Shrouded-Tribo-Area Optimized Ternary Electrification Layered Architecture. An S; Fu S; He W; Li G; Xing P; Du Y; Wang J; Zhou S; Pu X; Hu C Small; 2023 Nov; 19(45):e2303277. PubMed ID: 37434035 [TBL] [Abstract][Full Text] [Related]
3. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Wang ZL ACS Nano; 2013 Nov; 7(11):9533-57. PubMed ID: 24079963 [TBL] [Abstract][Full Text] [Related]
4. Structure and Dimension Effects on the Performance of Layered Triboelectric Nanogenerators in Contact-Separation Mode. Yin X; Liu D; Zhou L; Li X; Zhang C; Cheng P; Guo H; Song W; Wang J; Wang ZL ACS Nano; 2019 Jan; 13(1):698-705. PubMed ID: 30566320 [TBL] [Abstract][Full Text] [Related]
5. High-Performance Polyimide-Based Water-Solid Triboelectric Nanogenerator for Hydropower Harvesting. Tang N; Zheng Y; Yuan M; Jin K; Haick H ACS Appl Mater Interfaces; 2021 Jul; 13(27):32106-32114. PubMed ID: 34223763 [TBL] [Abstract][Full Text] [Related]
6. Charge Dispersion Strategy for High-Performance and Rain-Proof Triboelectric Nanogenerator. Sun Q; Ren G; He S; Tang B; Li Y; Wei Y; Shi X; Tan S; Yan R; Wang K; Yu L; Wang J; Gao K; Zhu C; Song Y; Gong Z; Lu G; Huang W; Yu HD Adv Mater; 2024 Feb; 36(8):e2307918. PubMed ID: 37852010 [TBL] [Abstract][Full Text] [Related]
7. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density. Zhao Z; Dai Y; Liu D; Zhou L; Li S; Wang ZL; Wang J Nat Commun; 2020 Dec; 11(1):6186. PubMed ID: 33273477 [TBL] [Abstract][Full Text] [Related]
8. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators. Chen J; Yang J; Guo H; Li Z; Zheng L; Su Y; Wen Z; Fan X; Wang ZL ACS Nano; 2015 Dec; 9(12):12334-43. PubMed ID: 26529374 [TBL] [Abstract][Full Text] [Related]
9. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Wang J; Wu C; Dai Y; Zhao Z; Wang A; Zhang T; Wang ZL Nat Commun; 2017 Jul; 8(1):88. PubMed ID: 28729530 [TBL] [Abstract][Full Text] [Related]
10. Direct-Current Rotary-Tubular Triboelectric Nanogenerators Based on Liquid-Dielectrics Contact for Sustainable Energy Harvesting and Chemical Composition Analysis. Wang J; Wu Z; Pan L; Gao R; Zhang B; Yang L; Guo H; Liao R; Wang ZL ACS Nano; 2019 Feb; 13(2):2587-2598. PubMed ID: 30721021 [TBL] [Abstract][Full Text] [Related]
11. Flexible Layered-Graphene Charge Modulation for Highly Stable Triboelectric Nanogenerator. Sahoo M; Lai SN; Wu JM; Wu MC; Lai CS Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578591 [TBL] [Abstract][Full Text] [Related]
12. A Multifunction Freestanding Liquid-Solid Triboelectric Nanogenerator Based on Low-Frequency Mechanical Sloshing. Huang T; Hao X; Li M; He B; Sun W; Zhang K; Liao L; Pan Y; Huang J; Qin A ACS Appl Mater Interfaces; 2022 Dec; 14(49):54716-54724. PubMed ID: 36453536 [TBL] [Abstract][Full Text] [Related]
13. High-Output Single-Electrode Droplet Triboelectric Nanogenerator Based on Asymmetrical Distribution Electrostatic Induction Enhancement. Wang W; Zhang L; Wang H; Zhao Y; Cheng J; Meng J; Wang D; Liu Y Small; 2023 Sep; 19(37):e2301568. PubMed ID: 37150866 [TBL] [Abstract][Full Text] [Related]
14. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. Wei X; Zhao Z; Zhang C; Yuan W; Wu Z; Wang J; Wang ZL ACS Nano; 2021 Aug; 15(8):13200-13208. PubMed ID: 34327988 [TBL] [Abstract][Full Text] [Related]
15. Capsule Triboelectric Nanogenerators: Toward Optional 3D Integration for High Output and Efficient Energy Harvesting from Broadband-Amplitude Vibrations. Wu C; Park JH; Koo B; Chen X; Wang ZL; Kim TW ACS Nano; 2018 Oct; 12(10):9947-9957. PubMed ID: 30272956 [TBL] [Abstract][Full Text] [Related]
16. Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives. Wang ZL Faraday Discuss; 2014; 176():447-58. PubMed ID: 25406406 [TBL] [Abstract][Full Text] [Related]
17. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. Zi Y; Guo H; Wen Z; Yeh MH; Hu C; Wang ZL ACS Nano; 2016 Apr; 10(4):4797-805. PubMed ID: 27077467 [TBL] [Abstract][Full Text] [Related]
18. Exploring Wettability: A Key to Optimizing Liquid-Solid Triboelectric Nanogenerators. Kulandaivel A; Potu S; Rajaboina RK; Khanapuram UK ACS Appl Mater Interfaces; 2024 Oct; 16(43):58029-58059. PubMed ID: 39413400 [TBL] [Abstract][Full Text] [Related]
19. High-Output Triboelectric Nanogenerator Achieved through Conductive Layer Strategy for Motion Step Sensing. Zhang Z; Feng Y; Feng M; Wang W; Du C; Zhang L; Li W; Wu Z; Yu T; Wang D ACS Appl Mater Interfaces; 2024 Sep; 16(37):49275-49285. PubMed ID: 39231300 [TBL] [Abstract][Full Text] [Related]
20. Structural and Chemical Modifications Towards High-Performance of Triboelectric Nanogenerators. Nurmakanov Y; Kalimuldina G; Nauryzbayev G; Adair D; Bakenov Z Nanoscale Res Lett; 2021 Jul; 16(1):122. PubMed ID: 34328566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]