These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32627762)
1. Immobilization of GH78 α-L-Rhamnosidase from Xu J; Shi X; Zhang X; Wang Z; Xiao W; Zhao L J Microbiol Biotechnol; 2021 Mar; 31(3):419-428. PubMed ID: 32627762 [TBL] [Abstract][Full Text] [Related]
2. Immobilization of high temperature-resistant GH3 β-glucosidase on a magnetic particle Fe Shi X; Xu J; Lu C; Wang Z; Xiao W; Zhao L Enzyme Microb Technol; 2019 Oct; 129():109347. PubMed ID: 31307574 [TBL] [Abstract][Full Text] [Related]
3. Amination of naringinase to improve citrus juice debittering using a catalyst immobilized on glyoxyl-agarose. Urrutia P; Arrieta R; Torres C; Guerrero C; Wilson L Food Chem; 2024 Sep; 452():139600. PubMed ID: 38744138 [TBL] [Abstract][Full Text] [Related]
4. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Luo CM; Ke LF; Huang XY; Zhuang XY; Guo ZW; Xiao Q; Chen J; Chen FQ; Yang QM; Ru Y; Weng HF; Xiao AF; Zhang YH Enzyme Microb Technol; 2024 Apr; 175():110410. PubMed ID: 38340378 [TBL] [Abstract][Full Text] [Related]
5. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. Defaei M; Taheri-Kafrani A; Miroliaei M; Yaghmaei P Int J Biol Macromol; 2018 Jul; 113():354-360. PubMed ID: 29486263 [TBL] [Abstract][Full Text] [Related]
6. Improving Pullulanase Catalysis via Reversible Immobilization on Modified Fe Wang J; Liu Z; Zhou Z Appl Biochem Biotechnol; 2017 Aug; 182(4):1467-1477. PubMed ID: 28185055 [TBL] [Abstract][Full Text] [Related]
7. Magnetic Fe Ulu A; Noma SAA; Koytepe S; Ates B Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1035-1045. PubMed ID: 29873527 [TBL] [Abstract][Full Text] [Related]
8. Chloro-Modified Magnetic Fe Ulu A; Noma SAA; Koytepe S; Ates B Appl Biochem Biotechnol; 2019 Mar; 187(3):938-956. PubMed ID: 30101367 [TBL] [Abstract][Full Text] [Related]
9. Covalent immobilization of α-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. Guo H; Tang Y; Yu Y; Xue L; Qian JQ Int J Biol Macromol; 2016 Jun; 87():537-44. PubMed ID: 26959172 [TBL] [Abstract][Full Text] [Related]
10. Thermostable enzyme-immobilized magnetic responsive Ni-based metal-organic framework nanorods as recyclable biocatalysts for efficient biosynthesis of S-adenosylmethionine. He J; Sun S; Zhou Z; Yuan Q; Liu Y; Liang H Dalton Trans; 2019 Feb; 48(6):2077-2085. PubMed ID: 30657139 [TBL] [Abstract][Full Text] [Related]
11. Screening β-glucosidase and α-rhamnosidase for biotransformation of naringin to naringenin by the one-pot enzymatic cascade. Lu M; Liu S; Zhao L; Pei J Enzyme Microb Technol; 2023 Jun; 167():110239. PubMed ID: 37043891 [TBL] [Abstract][Full Text] [Related]
12. Surface Modification of Fe(3)O(4)@SiO(2) Magnetic Nanoparticles for Immobilization of Lipase. Xia GH; Liu W; Jiang XP; Wang XY; Zhang YW; Guo J J Nanosci Nanotechnol; 2017 Jan; 17(1):370-6. PubMed ID: 29620837 [TBL] [Abstract][Full Text] [Related]
13. Alpha-L-rhamnosidase from Aspergillus clavato-nanicus MTCC-9611 active at alkaline pH. Yadav V; Yadav S; Yadav S; Yadav KD Prikl Biokhim Mikrobiol; 2012; 48(3):328-33. PubMed ID: 22834305 [TBL] [Abstract][Full Text] [Related]
14. Simple physical adsorption technique to immobilize Yarrowia lipolytica lipase purified by different methods on magnetic nanoparticles: Adsorption isotherms and thermodynamic approach. Carvalho T; Pereira ADS; Bonomo RCF; Franco M; Finotelli PV; Amaral PFF Int J Biol Macromol; 2020 Oct; 160():889-902. PubMed ID: 32454106 [TBL] [Abstract][Full Text] [Related]
15. Preparation of magnetic Fe3O4@SiO2 nanoparticles for immobilization of lipase. Liu W; Zhou F; Zhang XY; Li Y; Wang XY; Xu XM; Zhang YW J Nanosci Nanotechnol; 2014 Apr; 14(4):3068-72. PubMed ID: 24734736 [TBL] [Abstract][Full Text] [Related]
16. Biochemical characterization of Aspergillus oryzae recombinant α-l-rhamnosidase expressed in Pichia pastoris. Ishikawa M; Shiono Y; Koseki T J Biosci Bioeng; 2017 Dec; 124(6):630-634. PubMed ID: 28800907 [TBL] [Abstract][Full Text] [Related]
17. α-Rhamnosidase and β-glucosidase expressed by naringinase immobilized on new ionic liquid sol-gel matrices: Activity and stability studies. Vila-Real H; Alfaia AJ; Rosa JN; Gois PM; Rosa ME; Calado AR; Ribeiro MH J Biotechnol; 2011 Apr; 152(4):147-58. PubMed ID: 20727919 [TBL] [Abstract][Full Text] [Related]
18. Design of epoxy-functionalized Fe Ulu A; Ozcan I; Koytepe S; Ates B Int J Biol Macromol; 2018 Aug; 115():1122-1130. PubMed ID: 29727644 [TBL] [Abstract][Full Text] [Related]
19. Immobilization of pectinase onto Fe3O4@SiO2-NH2 and its activity and stability. Fang G; Chen H; Zhang Y; Chen A Int J Biol Macromol; 2016 Jul; 88():189-95. PubMed ID: 27037054 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Luo X; Zhang L Biomacromolecules; 2010 Nov; 11(11):2896-903. PubMed ID: 20919701 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]