These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 32627911)
1. Bidirectional Catalysts for Liquid-Solid Redox Conversion in Lithium-Sulfur Batteries. Wang R; Luo C; Wang T; Zhou G; Deng Y; He Y; Zhang Q; Kang F; Lv W; Yang QH Adv Mater; 2020 Aug; 32(32):e2000315. PubMed ID: 32627911 [TBL] [Abstract][Full Text] [Related]
2. Promoting the Transformation of Li Yang X; Gao X; Sun Q; Jand SP; Yu Y; Zhao Y; Li X; Adair K; Kuo LY; Rohrer J; Liang J; Lin X; Banis MN; Hu Y; Zhang H; Li X; Li R; Zhang H; Kaghazchi P; Sham TK; Sun X Adv Mater; 2019 Jun; 31(25):e1901220. PubMed ID: 31062911 [TBL] [Abstract][Full Text] [Related]
3. Utilizing the Built-in Electric Field of p-n Junctions to Spatially Propel the Stepwise Polysulfide Conversion in Lithium-Sulfur Batteries. Li H; Chen C; Yan Y; Yan T; Cheng C; Sun D; Zhang L Adv Mater; 2021 Dec; 33(51):e2105067. PubMed ID: 34632643 [TBL] [Abstract][Full Text] [Related]
4. Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries. Hua W; Li H; Pei C; Xia J; Sun Y; Zhang C; Lv W; Tao Y; Jiao Y; Zhang B; Qiao SZ; Wan Y; Yang QH Adv Mater; 2021 Sep; 33(38):e2101006. PubMed ID: 34338356 [TBL] [Abstract][Full Text] [Related]
5. In situ grown α-Cos/Co heterostructures on nitrogen doped carbon polyhedra enabling the trapping and reaction-intensification of polysulfides towards high performance lithium sulfur batteries. Gu S; Bai Z; Majumder S; Huang B; Chen G Nanoscale; 2019 Nov; 11(43):20579-20588. PubMed ID: 31637397 [TBL] [Abstract][Full Text] [Related]
6. Furnishing Continuous Efficient Bidirectional Polysulfide Conversion for Long-Life and High-Loading Lithium-Sulfur Batteries via the Built-In Electric Field. Ren Y; Ma Y; Wang B; Chang S; Zhai Q; Wu H; Dai Y; Yang Y; Tang S; Meng X Small; 2023 Sep; 19(36):e2300065. PubMed ID: 37147776 [TBL] [Abstract][Full Text] [Related]
7. Pt-NbC Composite as a Bifunctional Catalyst for Redox Transformation of Polysulfides in High-Rate-Performing Lithium-Sulfur Batteries. Liu Y; Hong D; Chen M; Su Z; Gao Y; Zhang Y; Long D ACS Appl Mater Interfaces; 2021 Jul; 13(29):35008-35018. PubMed ID: 34275287 [TBL] [Abstract][Full Text] [Related]
8. InOOH as an efficient bidirectional catalyst for accelerated polysulfides conversion to enable high-performance lithium-sulfur batteries. Zhao T; Chen J; Dai K; Yuan M; Zhang J; Li S; Liu Z; He H; Yang C; Zhang G J Colloid Interface Sci; 2022 Mar; 610():418-426. PubMed ID: 34929512 [TBL] [Abstract][Full Text] [Related]
9. Phosphorous-Based Heterostructure for the Effective Catalysis of Polysulfide Reactions with Phase Changes in High-Sulfur-Loading Lithium-Sulfur Batteries. Zhao Y; Zhang H; Ye H; Zhao D; Lee JY; Huang L Small Methods; 2024 Mar; 8(3):e2300610. PubMed ID: 38009523 [TBL] [Abstract][Full Text] [Related]
10. N, S-Coordinated Co Single Atomic Catalyst Boosting Adsorption and Conversion of Lithium Polysulfides for Lithium-Sulfur Batteries. Liu K; Wang X; Gu S; Yuan H; Jiang F; Li Y; Tan W; Long Q; Chen J; Xu Z; Lu Z Small; 2022 Nov; 18(46):e2204707. PubMed ID: 36193958 [TBL] [Abstract][Full Text] [Related]
11. Self-Assembled Macrocyclic Copper Complex Enables Homogeneous Catalysis for High-Loading Lithium-Sulfur Batteries. Yu Z; Huang X; Zheng M; Zhang SQ; Yang Y; Lu J Adv Mater; 2023 Jun; 35(26):e2300861. PubMed ID: 36990963 [TBL] [Abstract][Full Text] [Related]
12. The Catalyst Design for Lithium-Sulfur Batteries: Roles and Routes. Cao Y; Gu S; Han J; Yang QH; Lv W Chem Rec; 2022 Oct; 22(10):e202200124. PubMed ID: 35675916 [TBL] [Abstract][Full Text] [Related]
13. Engineering Fe-N Coordination Structures for Fast Redox Conversion in Lithium-Sulfur Batteries. Ma C; Zhang Y; Feng Y; Wang N; Zhou L; Liang C; Chen L; Lai Y; Ji X; Yan C; Wei W Adv Mater; 2021 Jul; 33(30):e2100171. PubMed ID: 34145629 [TBL] [Abstract][Full Text] [Related]
14. Boosting Polysulfide Catalytic Conversion and Facilitating Li Yan W; Gao X; Yang JL; Xiong X; Xia S; Huang W; Chen Y; Fu L; Zhu Y; Wu Y Small; 2022 Mar; 18(11):e2106679. PubMed ID: 35060309 [TBL] [Abstract][Full Text] [Related]
15. Coordinated Adsorption and Catalytic Conversion of Polysulfides Enabled by Perovskite Bimetallic Hydroxide Nanocages for Lithium-Sulfur Batteries. Wang X; Han J; Luo C; Zhang B; Ma J; Li Z; He YB; Yang QH; Kang F; Lv W Small; 2021 Aug; 17(31):e2101538. PubMed ID: 34160905 [TBL] [Abstract][Full Text] [Related]
16. Breaking Barriers to High-Practical Li-S Batteries with Isotropic Binary Sulfiphilic Electrocatalyst: Creating a Virtuous Cycle for Favorable Polysulfides Redox Environments. Xiao W; Yoo K; Kim JH; Xu H Adv Sci (Weinh); 2023 Nov; 10(33):e2303916. PubMed ID: 37867214 [TBL] [Abstract][Full Text] [Related]
17. Hollow heterostructure design enables self-cleaning surface for enhanced polysulfides conversion in advanced lithium-sulfur batteries. Ren R; Zhao Z; Meng Z; Wang X J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1576-1584. PubMed ID: 34742074 [TBL] [Abstract][Full Text] [Related]
18. Size-Dependent Cobalt Catalyst for Lithium Sulfur Batteries: From Single Atoms to Nanoclusters and Nanoparticles. Zhou X; Meng R; Zhong N; Yin S; Ma G; Liang X Small Methods; 2021 Oct; 5(10):e2100571. PubMed ID: 34927940 [TBL] [Abstract][Full Text] [Related]
19. Constructing Patch-Ni-Shelled Pt@Ni Nanoparticles within Confined Nanoreactors for Catalytic Oxidation of Insoluble Polysulfides in Li-S Batteries. Liu Y; Kou W; Li X; Huang C; Shui R; He G Small; 2019 Aug; 15(34):e1902431. PubMed ID: 31207131 [TBL] [Abstract][Full Text] [Related]
20. A Class of Catalysts of BiOX (X = Cl, Br, I) for Anchoring Polysulfides and Accelerating Redox Reaction in Lithium Sulfur Batteries. Wu X; Liu N; Wang M; Qiu Y; Guan B; Tian D; Guo Z; Fan L; Zhang N ACS Nano; 2019 Nov; 13(11):13109-13115. PubMed ID: 31647637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]