These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 32628111)

  • 1. PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer.
    Brunner A; Suryo Rahmanto A; Johansson H; Franco M; Viiliäinen J; Gazi M; Frings O; Fredlund E; Spruck C; Lehtiö J; Rantala JK; Larsson LG; Sangfelt O
    Elife; 2020 Jul; 9():. PubMed ID: 32628111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAXIP1 Potentiates the Combination of WEE1 Inhibitor AZD1775 and Platinum Agents in Lung Cancer.
    Jhuraney A; Woods NT; Wright G; Rix L; Kinose F; Kroeger JL; Remily-Wood E; Cress WD; Koomen JM; Brantley SG; Gray JE; Haura EB; Rix U; Monteiro AN
    Mol Cancer Ther; 2016 Jul; 15(7):1669-81. PubMed ID: 27196765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic lethal combination of CHK1 and WEE1 inhibition for treatment of castration-resistant prostate cancer.
    Chao Y; Chen Y; Zheng W; Demanelis K; Liu Y; Connelly JA; Wang H; Li S; Wang QJ
    Oncogene; 2024 Mar; 43(11):789-803. PubMed ID: 38273024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AZD1775 sensitizes T cell acute lymphoblastic leukemia cells to cytarabine by promoting apoptosis over DNA repair.
    Ford JB; Baturin D; Burleson TM; Van Linden AA; Kim YM; Porter CC
    Oncotarget; 2015 Sep; 6(29):28001-10. PubMed ID: 26334102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential drug treatment targeting cell cycle and cell fate regulatory programs blocks non-genetic cancer evolution in acute lymphoblastic leukemia.
    Malyukova A; Lahnalampi M; Falqués-Costa T; Pölönen P; Sipola M; Mehtonen J; Teppo S; Akopyan K; Viiliainen J; Lohi O; Hagström-Andersson AK; Heinäniemi M; Sangfelt O
    Genome Biol; 2024 May; 25(1):143. PubMed ID: 38822412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic lethal combination of CHK1 and WEE1 inhibition for treatment of castration-resistant prostate cancer.
    Wang Q; Chao Y; Chen Y; Zheng W; Demanelis K; Liu Y; Connelly J; Wang H
    Res Sq; 2023 Nov; ():. PubMed ID: 37987002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased HDAC Activity and c-MYC Expression Mediate Acquired Resistance to WEE1 Inhibition in Acute Leukemia.
    Garcia TB; Uluisik RC; van Linden AA; Jones KL; Venkataraman S; Vibhakar R; Porter CC
    Front Oncol; 2020; 10():296. PubMed ID: 32195191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GCN2 is a determinant of the response to WEE1 kinase inhibition in small-cell lung cancer.
    Drainas AP; Hsu WH; Dallas AE; Poltorack CD; Kim JW; He A; Coles GL; Baron M; Bassik MC; Sage J
    Cell Rep; 2024 Aug; 43(8):114606. PubMed ID: 39120974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pediatric DDR inhibitor combinations: Are WEE1 there yet?
    Slotkin EK; Ortiz MV; Glade Bender JL
    Cancer; 2023 Jul; 129(14):2132-2134. PubMed ID: 37081596
    [No Abstract]   [Full Text] [Related]  

  • 10. Selective Wee1 Inhibitors Led to Antitumor Activity
    Guler S; DiPoto MC; Crespo A; Caldwell R; Doerfel B; Grossmann N; Ho K; Huck B; Jones CC; Lan R; Musil D; Potnick J; Schilke H; Sherer B; Simon S; Sirrenberg C; Zhang Z; Liu-Bujalski L
    ACS Med Chem Lett; 2023 May; 14(5):566-576. PubMed ID: 37197456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target.
    Ghelli Luserna di Rorà A; Cerchione C; Martinelli G; Simonetti G
    J Hematol Oncol; 2020 Sep; 13(1):126. PubMed ID: 32958072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomics reveals novel modes of function and inter-relationships among PIKKs in response to genotoxic stress.
    Schlam-Babayov S; Bensimon A; Harel M; Geiger T; Aebersold R; Ziv Y; Shiloh Y
    EMBO J; 2021 Jan; 40(2):e104400. PubMed ID: 33215756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimers of DNA-PK create a stage for DNA double-strand break repair.
    Chaplin AK; Hardwick SW; Liang S; Kefala Stavridi A; Hnizda A; Cooper LR; De Oliveira TM; Chirgadze DY; Blundell TL
    Nat Struct Mol Biol; 2021 Jan; 28(1):13-19. PubMed ID: 33077952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel WEE1 pathway for replication stress responses.
    Pan T; Qin Q; Nong C; Gao S; Wang L; Cai B; Zhang M; Wu C; Chen H; Li T; Xiong D; Li G; Wang S; Yan S
    Nat Plants; 2021 Feb; 7(2):209-218. PubMed ID: 33574575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SLFN11 promotes CDT1 degradation by CUL4 in response to replicative DNA damage, while its absence leads to synthetic lethality with ATR/CHK1 inhibitors.
    Jo U; Murai Y; Chakka S; Chen L; Cheng K; Murai J; Saha LK; Miller Jenkins LM; Pommier Y
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33536335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. XRCC1 deficient triple negative breast cancers are sensitive to ATR, ATM and Wee1 inhibitor either alone or in combination with olaparib.
    Ali R; Alblihy A; Toss MS; Algethami M; Al Sunni R; Green AR; Rakha EA; Madhusudan S
    Ther Adv Med Oncol; 2020; 12():1758835920974201. PubMed ID: 33425022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting immunosuppressive macrophages overcomes PARP inhibitor resistance in BRCA1-associated triple-negative breast cancer.
    Mehta AK; Cheney EM; Hartl CA; Pantelidou C; Oliwa M; Castrillon JA; Lin JR; Hurst KE; de Oliveira Taveira M; Johnson NT; Oldham WM; Kalocsay M; Berberich MJ; Boswell SA; Kothari A; Johnson S; Dillon DA; Lipschitz M; Rodig S; Santagata S; Garber JE; Tung N; Yélamos J; Thaxton JE; Mittendorf EA; Sorger PK; Shapiro GI; Guerriero JL
    Nat Cancer; 2021 Jan; 2(1):66-82. PubMed ID: 33738458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells.
    Shen JZ; Qiu Z; Wu Q; Finlay D; Garcia G; Sun D; Rantala J; Barshop W; Hope JL; Gimple RC; Sangfelt O; Bradley LM; Wohlschlegel J; Rich JN; Spruck C
    Cell; 2021 Jan; 184(2):352-369.e23. PubMed ID: 33357448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding roles of cell cycle checkpoint inhibitors in radiation oncology.
    Hauge S; Eek Mariampillai A; Rødland GE; Bay LTE; Landsverk HB; Syljuåsen RG
    Int J Radiat Biol; 2023; 99(6):941-950. PubMed ID: 33877959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting DNA damage response pathways to activate the STING innate immune signaling pathway in human cancer cells.
    Wayne J; Brooks T; Landras A; Massey AJ
    FEBS J; 2021 Aug; 288(15):4507-4540. PubMed ID: 33529438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.