BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 32628183)

  • 1. Far-field Raman color superlensing based on disordered plasmonics.
    Kharintsev SS
    Opt Lett; 2019 Dec; 44(24):5909-5912. PubMed ID: 32628183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disordered Nonlinear Metalens for Raman Spectral Nanoimaging.
    Kharintsev SS; Kharitonov AV; Gazizov AR; Kazarian SG
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3862-3872. PubMed ID: 31913005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superresolution stimulated Raman scattering microscopy using 2-ENZ nano-composites.
    Kharintsev SS; Kharitonov AV; Alekseev AM; Kazarian SG
    Nanoscale; 2019 Apr; 11(16):7710-7719. PubMed ID: 30946390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications.
    Braic L; Vasilantonakis N; Mihai A; Villar Garcia IJ; Fearn S; Zou B; Alford NM; Doiron B; Oulton RF; Maier SA; Zayats AV; Petrov PK
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29857-29862. PubMed ID: 28820932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulated Raman Scattering from Mie-Resonant Subwavelength Nanoparticles.
    Zograf GP; Ryabov D; Rutckaia V; Voroshilov P; Tonkaev P; Permyakov DV; Kivshar Y; Makarov SV
    Nano Lett; 2020 Aug; 20(8):5786-5791. PubMed ID: 32579376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polychromatic approach to far-field superlensing at visible wavelengths.
    Lemoult F; Fink M; Lerosey G
    Nat Commun; 2012 Jun; 3():889. PubMed ID: 22673916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths.
    Labelle AJ; Bonifazi M; Tian Y; Wong C; Hoogland S; Favraud G; Walters G; Sutherland B; Liu M; Li J; Zhang X; Kelley SO; Sargent EH; Fratalocchi A
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5556-5565. PubMed ID: 28156089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement.
    Caligiuri V; Palei M; Imran M; Manna L; Krahne R
    ACS Photonics; 2018 Jun; 5(6):2287-2294. PubMed ID: 31867410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear Raman Effects Enhanced by Surface Plasmon Excitation in Planar Refractory Nanoantennas.
    Kharintsev SS; Kharitonov AV; Saikin SK; Alekseev AM; Kazarian SG
    Nano Lett; 2017 Sep; 17(9):5533-5539. PubMed ID: 28813607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials.
    Kaipurath RM; Pietrzyk M; Caspani L; Roger T; Clerici M; Rizza C; Ciattoni A; Di Falco A; Faccio D
    Sci Rep; 2016 Jun; 6():27700. PubMed ID: 27292270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Air-like plasmonics with ultralow-refractive-index silica aerogels.
    Kim Y; Baek S; Gupta P; Kim C; Chang K; Ryu SP; Kang H; Kim WS; Myoung J; Park W; Kim K
    Sci Rep; 2019 Feb; 9(1):2265. PubMed ID: 30783170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic superlensing in doped GaAs.
    Fehrenbacher M; Winnerl S; Schneider H; Döring J; Kehr SC; Eng LM; Huo Y; Schmidt OG; Yao K; Liu Y; Helm M
    Nano Lett; 2015 Feb; 15(2):1057-61. PubMed ID: 25584806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.
    Minn K; Anopchenko A; Yang J; Lee HWH
    Sci Rep; 2018 Feb; 8(1):2342. PubMed ID: 29402902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Side scattering shadow and energy concentration effects of epsilon-near-zero media.
    Song J; Luo J; Lai Y
    Opt Lett; 2018 Apr; 43(8):1738-1741. PubMed ID: 29652353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Efficient Super-Continuum Generation on an Epsilon-Near-Zero Surface.
    Tian W; Liang F; Chi S; Li C; Yu H; Zhang H; Zhang H
    ACS Omega; 2020 Feb; 5(5):2458-2464. PubMed ID: 32064405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulation of epsilon-near-zero wavelength for the optimization of linear and nonlinear absorption by supercritical fluid.
    Wu J; Liu X; Fu H; Chang KC; Zhang S; Fu HY; Li Q
    Sci Rep; 2021 Aug; 11(1):15936. PubMed ID: 34354198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared.
    Yoon J; Zhou M; Badsha MA; Kim TY; Jun YC; Hwangbo CK
    Sci Rep; 2015 Aug; 5():12788. PubMed ID: 26239808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband visible-near infrared and deep ultraviolet generation by four-wave mixing and high-order stimulated Raman scattering from the hybrid metasurfaces of plasmonic nanoantennae and Raman-active nanoparticles.
    Rim WS; Kim KH
    Phys Chem Chem Phys; 2019 Dec; 21(48):26615-26620. PubMed ID: 31793571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unprecedented Raman cascading and four-wave mixing from second-harmonic generation in optical fiber.
    Couderc V; Tonello A; Buy-Lesvigne C; Leproux P; Grossard L
    Opt Lett; 2010 Jan; 35(2):145-7. PubMed ID: 20081949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman cascade suppression by using wide band parametric conversion in large normal dispersion regime.
    Couderc V; Leproux P; Tombelaine V; Grossard L; Barthélémy A
    Opt Express; 2005 Oct; 13(21):8584-90. PubMed ID: 19498888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.