BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 32628240)

  • 41. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fatty acid, tricarboxylic acid cycle metabolites, and energy metabolism in vascular smooth muscle.
    Barron JT; Kopp SJ; Tow J; Parrillo JE
    Am J Physiol; 1994 Aug; 267(2 Pt 2):H764-9. PubMed ID: 8067432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy.
    Pappas G; Wilkinson ML; Gow AJ
    Nitric Oxide; 2023 Feb; 131():8-17. PubMed ID: 36470373
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.
    Noy T; Vergnolle O; Hartman TE; Rhee KY; Jacobs WR; Berney M; Blanchard JS
    J Biol Chem; 2016 Mar; 291(13):7060-9. PubMed ID: 26858255
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The metabolism of gamma-aminobutyrate and glucose in potassium ion-stimulated brain tissue in vitro.
    Machiyama Y; Balázs R; Hammond BJ; Julian T; Richter D
    Biochem J; 1970 Feb; 116(3):469-81. PubMed ID: 5435691
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The antidiabetic drug metformin decreases mitochondrial respiration and tricarboxylic acid cycle activity in cultured primary rat astrocytes.
    Hohnholt MC; Blumrich EM; Waagepetersen HS; Dringen R
    J Neurosci Res; 2017 Nov; 95(11):2307-2320. PubMed ID: 28316081
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle.
    Gibala MJ; Young ME; Taegtmeyer H
    Acta Physiol Scand; 2000 Apr; 168(4):657-65. PubMed ID: 10759602
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Understanding central carbon metabolism of rapidly proliferating mammalian cells based on analysis of key enzymatic activities in GS-CHO cell lines.
    Zou W; Al-Rubeai M
    Biotechnol Appl Biochem; 2016 Sep; 63(5):642-651. PubMed ID: 26108557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of glucose and insulin on HepG2-C3A cell metabolism.
    Iyer VV; Yang H; Ierapetritou MG; Roth CM
    Biotechnol Bioeng; 2010 Oct; 107(2):347-56. PubMed ID: 20506178
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria.
    Messer JI; Jackman MR; Willis WT
    Am J Physiol Cell Physiol; 2004 Mar; 286(3):C565-72. PubMed ID: 14602577
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer's disease.
    Pawlosky RJ; Kemper MF; Kashiwaya Y; King MT; Mattson MP; Veech RL
    J Neurochem; 2017 Apr; 141(2):195-207. PubMed ID: 28099989
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glutamate decreases pyruvate carboxylase activity and spares glucose as energy substrate in cultured cerebellar astrocytes.
    Qu H; Eloqayli H; Unsgård G; Sonnewald U
    J Neurosci Res; 2001 Dec; 66(6):1127-32. PubMed ID: 11746445
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pyruvate uptake is increased in highly invasive ovarian cancer cells under anoikis conditions for anaplerosis, mitochondrial function, and migration.
    Caneba CA; Bellance N; Yang L; Pabst L; Nagrath D
    Am J Physiol Endocrinol Metab; 2012 Oct; 303(8):E1036-52. PubMed ID: 22895781
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy metabolism profile of the effects of amino acid treatment on hepatocytes: Phenylalanine and phenylpyruvate inhibit glycolysis of hepatocytes.
    Suzuki R; Sato Y; Fukaya M; Suzuki D; Yoshizawa F; Sato Y
    Nutrition; 2021 Feb; 82():111042. PubMed ID: 33246675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A plant/fungal-type phosphoenolpyruvate carboxykinase located in the parasite mitochondrion ensures glucose-independent survival of
    Nitzsche R; Günay-Esiyok Ö; Tischer M; Zagoriy V; Gupta N
    J Biol Chem; 2017 Sep; 292(37):15225-15239. PubMed ID: 28726641
    [No Abstract]   [Full Text] [Related]  

  • 56. Hypoxic reprogramming.
    Kelly DP
    Nat Genet; 2008 Feb; 40(2):132-4. PubMed ID: 18227870
    [No Abstract]   [Full Text] [Related]  

  • 57. Computer simulation of energy metabolism in anoxic perfused rat heart.
    Achs MJ; Garfinkel D
    Am J Physiol; 1977 May; 232(5):R164-74. PubMed ID: 16502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase.
    Burgess SC; Hausler N; Merritt M; Jeffrey FM; Storey C; Milde A; Koshy S; Lindner J; Magnuson MA; Malloy CR; Sherry AD
    J Biol Chem; 2004 Nov; 279(47):48941-9. PubMed ID: 15347677
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatiotemporally Monitoring Cell Viability through Programmable Mitochondrial Membrane Potential Transformation by Using Fluorescent Carbon Dots.
    Yin X; Sun Y; Geng X; Li J; Yang R; Zhang K; Qu L; Li Z
    Adv Biosyst; 2020 Mar; 4(3):e1900261. PubMed ID: 32293145
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism.
    Rajasekaran R; Felser A; Nuoffer JM; Dufour JF; St-Pierre MV
    FASEB J; 2018 Sep; 32(9):5143-5161. PubMed ID: 29913563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.