These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32628482)

  • 1. Exploring pH Dependent Host/Guest Binding Affinities.
    Paul TJ; Vilseck JZ; Hayes RL; Brooks CL
    J Phys Chem B; 2020 Jul; 124(30):6520-6528. PubMed ID: 32628482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocols utilizing constant pH molecular dynamics to compute pH-dependent binding free energies.
    Kim MO; Blachly PG; Kaus JW; McCammon JA
    J Phys Chem B; 2015 Jan; 119(3):861-72. PubMed ID: 25134690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of pH-dependent binding free energies.
    Kim MO; McCammon JA
    Biopolymers; 2016 Jan; 105(1):43-9. PubMed ID: 26202905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational investigation of proton transfer, pKa shifts and pH-optimum of protein-DNA and protein-RNA complexes.
    Peng Y; Alexov E
    Proteins; 2017 Feb; 85(2):282-295. PubMed ID: 27936518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association: application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes.
    Alexov E
    Proteins; 2004 Aug; 56(3):572-84. PubMed ID: 15229889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detailed potential of mean force studies on host-guest systems from the SAMPL6 challenge.
    Song LF; Bansal N; Zheng Z; Merz KM
    J Comput Aided Mol Des; 2018 Oct; 32(10):1013-1026. PubMed ID: 30143917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational scheme for pH-dependent binding free energy calculation with explicit solvent.
    Lee J; Miller BT; Brooks BR
    Protein Sci; 2016 Jan; 25(1):231-43. PubMed ID: 26189656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute binding free energies for the SAMPL6 cucurbit[8]uril host-guest challenge via the AMOEBA polarizable force field.
    Laury ML; Wang Z; Gordon AS; Ponder JW
    J Comput Aided Mol Des; 2018 Oct; 32(10):1087-1095. PubMed ID: 30324303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic contributions to residue-specific protonation equilibria and proton binding capacitance for a small protein.
    Lindman S; Linse S; Mulder FA; André I
    Biochemistry; 2006 Nov; 45(47):13993-4002. PubMed ID: 17115694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standard state free energies, not pK
    Gunner MR; Murakami T; Rustenburg AS; Işık M; Chodera JD
    J Comput Aided Mol Des; 2020 May; 34(5):561-573. PubMed ID: 32052350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of aminoglycoside-rRNA recognition: the binding of neomycin-class aminoglycosides to the A site of 16S rRNA.
    Kaul M; Pilch DS
    Biochemistry; 2002 Jun; 41(24):7695-706. PubMed ID: 12056901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.
    Kim MO; Blachly PG; McCammon JA
    PLoS Comput Biol; 2015 Oct; 11(10):e1004341. PubMed ID: 26506513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple protonation equilibria in electrostatics of protein-protein binding.
    Piłat Z; Antosiewicz JM
    J Phys Chem B; 2008 Nov; 112(47):15074-85. PubMed ID: 18950218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity descriptors in acid catalysis: acid strength, proton affinity and host-guest interactions.
    Deshlahra P; Iglesia E
    Chem Commun (Camb); 2020 Jul; 56(54):7371-7398. PubMed ID: 32568324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminoglycoside binding in the major groove of duplex RNA: the thermodynamic and electrostatic forces that govern recognition.
    Jin E; Katritch V; Olson WK; Kharatisvili M; Abagyan R; Pilch DS
    J Mol Biol; 2000 Apr; 298(1):95-110. PubMed ID: 10756107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-Neutral Constant pH Molecular Dynamics Simulations Using a Parsimonious Proton Buffer.
    Donnini S; Ullmann RT; Groenhof G; Grubmüller H
    J Chem Theory Comput; 2016 Mar; 12(3):1040-51. PubMed ID: 26881315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retardation of proton transfer caused by binding of the transition metal ion to the bacterial reaction center is due to pKa shifts of key protonatable residues.
    Gerencsér L; Maróti P
    Biochemistry; 2001 Feb; 40(6):1850-60. PubMed ID: 11327848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes.
    Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Med Chem; 2003 Oct; 46(21):4487-500. PubMed ID: 14521411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The SAMPL5 host-guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method.
    Yin J; Henriksen NM; Slochower DR; Gilson MK
    J Comput Aided Mol Des; 2017 Jan; 31(1):133-145. PubMed ID: 27638809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.