These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32628619)

  • 1. [Rehabilitation of traumatic spinal cord injury with lower limb exoskeleton].
    Tóth L; Bors V; Pallag A; Pinczker V; Dóczi T; Cserháti P; Shenker B; Büki A; Nyitrai M; Maróti P
    Orv Hetil; 2020 Jul; 161(29):1200-1207. PubMed ID: 32628619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury.
    Lajeunesse V; Vincent C; Routhier F; Careau E; Michaud F
    Disabil Rehabil Assist Technol; 2016 Oct; 11(7):535-47. PubMed ID: 26340538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exoskeletons for Personal Use After Spinal Cord Injury.
    Kandilakis C; Sasso-Lance E
    Arch Phys Med Rehabil; 2021 Feb; 102(2):331-337. PubMed ID: 31228407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety.
    Gagnon DH; Escalona MJ; Vermette M; Carvalho LP; Karelis AD; Duclos C; Aubertin-Leheudre M
    J Neuroeng Rehabil; 2018 Mar; 15(1):12. PubMed ID: 29490678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
    Pinto D; Garnier M; Barbas J; Chang SH; Charlifue S; Field-Fote E; Furbish C; Tefertiller C; Mummidisetty CK; Taylor H; Jayaraman A; Heinemann AW
    J Neuroeng Rehabil; 2020 Jan; 17(1):4. PubMed ID: 31924224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review.
    Singh H; Unger J; Zariffa J; Pakosh M; Jaglal S; Craven BC; Musselman KE
    Disabil Rehabil Assist Technol; 2018 Oct; 13(7):704-715. PubMed ID: 29334467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinician Perceptions of Robotic Exoskeletons for Locomotor Training After Spinal Cord Injury: A Qualitative Approach.
    Ehrlich-Jones L; Crown DS; Kinnett-Hopkins D; Field-Fote E; Furbish C; Mummidisetty CK; Bond RA; Forrest G; Jayaraman A; Heinemann AW
    Arch Phys Med Rehabil; 2021 Feb; 102(2):203-215. PubMed ID: 33171130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study.
    Benson I; Hart K; Tussler D; van Middendorp JJ
    Clin Rehabil; 2016 Jan; 30(1):73-84. PubMed ID: 25761635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Users with spinal cord injury experience of robotic Locomotor exoskeletons: a qualitative study of the benefits, limitations, and recommendations.
    Kinnett-Hopkins D; Mummidisetty CK; Ehrlich-Jones L; Crown D; Bond RA; Applebaum MH; Jayaraman A; Furbish C; Forrest G; Field-Fote E; Heinemann AW
    J Neuroeng Rehabil; 2020 Sep; 17(1):124. PubMed ID: 32917287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Robot therapy with the H2 exoskeleton for gait rehabilitation in patients with incomplete spinal cord injry. A clinical experience].
    Gil-Agudo A; Del Ama-Espinosa AJ; Lozano-Berrio V; Fernández-López A; Megía García-Carpintero A; Benito-Penalva J; Pons JL
    Rehabilitacion (Madr); 2020; 54(2):87-95. PubMed ID: 32370833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable rehabilitation exoskeletons of the lower limb: analysis of versatility and adaptability.
    Plaza A; Hernandez M; Puyuelo G; Garces E; Garcia E
    Disabil Rehabil Assist Technol; 2023 May; 18(4):392-406. PubMed ID: 33332159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Satisfaction and perceptions of long-term manual wheelchair users with a spinal cord injury upon completion of a locomotor training program with an overground robotic exoskeleton.
    Gagnon DH; Vermette M; Duclos C; Aubertin-Leheudre M; Ahmed S; Kairy D
    Disabil Rehabil Assist Technol; 2019 Feb; 14(2):138-145. PubMed ID: 29256640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a lower limb walking exoskeleton on quality of life and activities of daily living in patients with complete spinal cord injury: A randomized controlled trial.
    Hu X; Lu J; Wang Y; Pang R; Liu J; Gou X; Bai X; Zhang A; Cheng H; Wang Q; Chang Y; Yin J; Chang C; Xiao H; Wang W
    Technol Health Care; 2024; 32(1):243-253. PubMed ID: 37483030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients.
    Jansen O; Grasmuecke D; Meindl RC; Tegenthoff M; Schwenkreis P; Sczesny-Kaiser M; Wessling M; Schildhauer TA; Fisahn C; Aach M
    World Neurosurg; 2018 Feb; 110():e73-e78. PubMed ID: 29081392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic exoskeletons for reengaging in everyday activities: promises, pitfalls, and opportunities.
    Fritz H; Patzer D; Galen SS
    Disabil Rehabil; 2019 Mar; 41(5):560-563. PubMed ID: 29110547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study.
    Louie DR; Eng JJ; Lam T;
    J Neuroeng Rehabil; 2015 Oct; 12():82. PubMed ID: 26463355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Usability and acceptance of using a lower-limb exoskeleton controlled by a BMI in incomplete spinal cord injury patients: a case study.
    Quiles V; Ferrero L; Ianez E; Ortiz M; Megia A; Comino N; Gil-Agudo AM; Azorin JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4737-4740. PubMed ID: 33019049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.