BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32628719)

  • 1. OSS-DBS: Open-source simulation platform for deep brain stimulation with a comprehensive automated modeling.
    Butenko K; Bahls C; Schröder M; Köhling R; van Rienen U
    PLoS Comput Biol; 2020 Jul; 16(7):e1008023. PubMed ID: 32628719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analyzing the tradeoff between electrical complexity and accuracy in patient-specific computational models of deep brain stimulation.
    Howell B; McIntyre CC
    J Neural Eng; 2016 Jun; 13(3):036023. PubMed ID: 27172137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive Estimation of the Neural Activation Extent in Computational Volume Conductor Models of Deep Brain Stimulation.
    Schmidt C; van Rienen U
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1828-1839. PubMed ID: 29989959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational analysis of deep brain stimulation.
    McIntyre CC; Miocinovic S; Butson CR
    Expert Rev Med Devices; 2007 Sep; 4(5):615-22. PubMed ID: 17850196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.
    Gabran SR; Saad JH; Salama MM; Mansour RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6485-8. PubMed ID: 19964439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between neural activation and electric field distribution during deep brain stimulation.
    Astrom M; Diczfalusy E; Martens H; Wardell K
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):664-672. PubMed ID: 25350910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FastField: An open-source toolbox for efficient approximation of deep brain stimulation electric fields.
    Baniasadi M; Proverbio D; Gonçalves J; Hertel F; Husch A
    Neuroimage; 2020 Dec; 223():117330. PubMed ID: 32890746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the field distribution in deep brain stimulation: the influence of anisotropy of brain tissue.
    Schmidt C; van Rienen U
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1583-92. PubMed ID: 22410323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface.
    McIntyre CC; Butson CR; Maks CB; Noecker AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Soft-Tissue Heterogeneity in Computational Models of Deep Brain Stimulation.
    Howell B; McIntyre CC
    Brain Stimul; 2017; 10(1):46-50. PubMed ID: 27720186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-automated generation of individual computational models of the human head and torso from MR images.
    Kalloch B; Bode J; Kozlov M; Pampel A; Hlawitschka M; Sehm B; Villringer A; Möller HE; Bazin PL
    Magn Reson Med; 2019 Mar; 81(3):2090-2105. PubMed ID: 30230021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep brain stimulation electrode modeling in rats.
    Andree A; Li N; Butenko K; Kober M; Chen JZ; Higuchi T; Fauser M; Storch A; Ip CW; Kühn AA; Horn A; van Rienen U
    Exp Neurol; 2022 Apr; 350():113978. PubMed ID: 35026227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art.
    Nielsen JD; Madsen KH; Puonti O; Siebner HR; Bauer C; Madsen CG; Saturnino GB; Thielscher A
    Neuroimage; 2018 Jul; 174():587-598. PubMed ID: 29518567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The SONATA data format for efficient description of large-scale network models.
    Dai K; Hernando J; Billeh YN; Gratiy SL; Planas J; Davison AP; Dura-Bernal S; Gleeson P; Devresse A; Dichter BK; Gevaert M; King JG; Van Geit WAH; Povolotsky AV; Muller E; Courcol JD; Arkhipov A
    PLoS Comput Biol; 2020 Feb; 16(2):e1007696. PubMed ID: 32092054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
    Butson CR; McIntyre CC
    Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.
    van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH
    J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cross validation study of deep brain stimulation targeting: from experts to atlas-based, segmentation-based and automatic registration algorithms.
    Castro FJ; Pollo C; Meuli R; Maeder P; Cuisenaire O; Cuadra MB; Villemure JG; Thiran JP
    IEEE Trans Med Imaging; 2006 Nov; 25(11):1440-50. PubMed ID: 17117773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A latent force model for describing electric propagation in deep brain stimulation: a simulation study.
    Alvarado PA; Alvarez MA; Daza-Santacoloma G; Orozco A; Castellanos-Dominguez G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2617-20. PubMed ID: 25570527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.