These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32628823)
81. Molecular Identification of Entomopathogenic Nematode Isolates from the Philippines and their Biological Control Potential Against Lepidopteran Pests of Corn. Caoili BL; Latina RA; Sandoval RFC; Orajay JI J Nematol; 2018 Sep; 50(2):99-110. PubMed ID: 30451431 [TBL] [Abstract][Full Text] [Related]
82. Entomopathogenic nematodes in the European biocontrol market. Ehlers RU Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):3-16. PubMed ID: 15149088 [TBL] [Abstract][Full Text] [Related]
83. Pollination by fungus gnats and associated floral characteristics in five families of the Japanese flora. Mochizuki K; Kawakita A Ann Bot; 2018 Mar; 121(4):651-663. PubMed ID: 29300811 [TBL] [Abstract][Full Text] [Related]
84. Efficacy of Entomopathogenic Nematodes Against the Tobacco Cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Yan X; Shahid Arain M; Lin Y; Gu X; Zhang L; Li J; Han R J Econ Entomol; 2020 Feb; 113(1):64-72. PubMed ID: 31602480 [TBL] [Abstract][Full Text] [Related]
85. LC-MS/MS Method Minimizing Matrix Effect for the Analysis of Bifenthrin and Butachlor in Chinese Chives and Its Application for Residual Study. Kim SH; Lee YH; Jeong MJ; Gwon DY; Lee JH; Shin Y; Choi H Foods; 2023 Apr; 12(8):. PubMed ID: 37107478 [TBL] [Abstract][Full Text] [Related]
86. Chemosensory protein 4 is required for Yang Y; Hua D; Zhu J; Wang F; Zhang Y Front Physiol; 2022; 13():989601. PubMed ID: 36237523 [No Abstract] [Full Text] [Related]
87. The variability of bacterial communities in both the endosphere and ectosphere of different niches in Chinese chives (Allium tuberosum). Wang Y; Wang C; Gu Y; Wang P; Song W; Ma J; Yang X PLoS One; 2020; 15(1):e0227671. PubMed ID: 31945106 [TBL] [Abstract][Full Text] [Related]
88. First record of entomopathogenic nematodes from Yucatán State, México and their infectivity capacity against Ávila-López MB; García-Maldonado JQ; Estrada-Medina H; Hernández-Mena DI; Cerqueda-García D; Vidal-Martínez VM PeerJ; 2021; 9():e11633. PubMed ID: 34249499 [TBL] [Abstract][Full Text] [Related]
89. Study on the Diversity of Fungal and Bacterial Communities in Continuous Cropping Fields of Chinese Chives ( Gu Y; Wang Y; Wang P; Wang C; Ma J; Yang X; Ma D; Li M Biomed Res Int; 2020; 2020():3589758. PubMed ID: 33381549 [TBL] [Abstract][Full Text] [Related]
90. The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (Coleoptera: Curculionidae). Girling RD; Ennis D; Dillon AB; Griffin CT J Invertebr Pathol; 2010 Jul; 104(3):195-202. PubMed ID: 20382152 [TBL] [Abstract][Full Text] [Related]
91. A new threat to bees? Entomopathogenic nematodes used in biological pest control cause rapid mortality in Bombus terrestris. Dutka A; McNulty A; Williamson SM PeerJ; 2015; 3():e1413. PubMed ID: 26618084 [TBL] [Abstract][Full Text] [Related]
92. Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. Blanco-Pérez R; Bueno-Pallero FÁ; Vicente-Díez I; Marco-Mancebón VS; Pérez-Moreno I; Campos-Herrera R J Invertebr Pathol; 2019 Jun; 164():5-15. PubMed ID: 30974088 [TBL] [Abstract][Full Text] [Related]
93. Long-term Persistence of Native New York Entomopathogenic Nematode Isolates Across Crop Rotation. Shields EJ; Testa AM; O'Neil WJ J Econ Entomol; 2018 Dec; 111(6):2592-2598. PubMed ID: 30169810 [TBL] [Abstract][Full Text] [Related]
94. Chive (Allium schoenoprasum L.) response as a phytoextraction plant in cadmium-contaminated soils. Eisazadeh S; Asadi Kapourchal S; Homaee M; Noorhosseini SA; Damalas CA Environ Sci Pollut Res Int; 2019 Jan; 26(1):152-160. PubMed ID: 30387056 [TBL] [Abstract][Full Text] [Related]
95. Efficiency of TiO Inprasit S; Hamjinda NS; Supothina S; Chuaybamroong P Environ Sci Pollut Res Int; 2023 Nov; 30(52):112347-112356. PubMed ID: 37831268 [TBL] [Abstract][Full Text] [Related]
96. Entomopathogenic Nematodes for Field Control of Onion Maggot ( Filgueiras CC; Shields EJ; Nault BA; Willett DS Insects; 2023 Jul; 14(7):. PubMed ID: 37504629 [TBL] [Abstract][Full Text] [Related]
97. Selection and Validation of Reference Genes for RT-qPCR Normalization in Fu H; Huang T; Yin C; Xu Z; Li C; Liu C; Wu T; Song F; Feng F; Yang F Front Physiol; 2021; 12():818210. PubMed ID: 35087425 [No Abstract] [Full Text] [Related]
98. Comparative Estimation of Genetic Diversity in Population Studies using Molecular Sampling and Traditional Sampling Methods. Saeb AT; David SK Bioinformation; 2014; 10(6):347-52. PubMed ID: 25097377 [TBL] [Abstract][Full Text] [Related]
99. An innovative strategy for control of fungus gnats using entomopathogenic nematodes alone or in combination with waterlogging. Chen C; Ma H; Ma M; Li J; Zheng S; Song Q; Gu X; Shapiro-Ilan D; Ruan W J Nematol; 2020; 52():1-9. PubMed ID: 32628823 [TBL] [Abstract][Full Text] [Related]
100. Integrated Management of Chive Gnats ( Yan X; Zhao G; Han R Insects; 2019 Jun; 10(6):. PubMed ID: 31195641 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]