These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 32628854)

  • 21. A Custom Multiphoton Microscopy Platform for Live Imaging of Mouse Cornea and Conjunctiva.
    Wu YF; Ye RT; Pan MK; Lin SJ; Tan HY
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478739
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct quantification of gene expression using fluorescence correlation spectroscopy.
    Nomura Y; Nakamura T; Feng Z; Kinjo M
    Curr Pharm Biotechnol; 2007 Oct; 8(5):286-90. PubMed ID: 17979726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence correlation spectroscopy with autofluorescent proteins.
    Kohl T; Schwille P
    Adv Biochem Eng Biotechnol; 2005; 95():107-42. PubMed ID: 16080267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Saturated two-photon excitation fluorescence microscopy for the visualization of cerebral neural networks at millimeters deep depth.
    Chakraborty S; Lee SY; Lee JC; Yen CT; Sun CK
    J Biophotonics; 2019 Jan; 12(1):e201800136. PubMed ID: 30112801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Four-color fluorescence correlation spectroscopy realized in a grating-based detection platform.
    Burkhardt M; Heinze KG; Schwille P
    Opt Lett; 2005 Sep; 30(17):2266-8. PubMed ID: 16190439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells.
    Hui YY; Zhang B; Chang YC; Chang CC; Chang HC; Hsu JH; Chang K; Chang FH
    Opt Express; 2010 Mar; 18(6):5896-905. PubMed ID: 20389607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescence correlation spectroscopy in living cells.
    Kim SA; Heinze KG; Schwille P
    Nat Methods; 2007 Nov; 4(11):963-73. PubMed ID: 17971781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy.
    Pan X; Yu H; Shi X; Korzh V; Wohland T
    J Biomed Opt; 2007; 12(1):014034. PubMed ID: 17343509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope.
    Ohsugi Y; Kinjo M
    J Biomed Opt; 2009; 14(1):014030. PubMed ID: 19256718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex.
    Kobat D; Horton NG; Xu C
    J Biomed Opt; 2011 Oct; 16(10):106014. PubMed ID: 22029361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does optical microangiography provide accurate imaging of capillary vessels?: validation using multiphoton microscopy.
    Wang H; Baran U; Li Y; Qin W; Wang W; Zeng H; Wang RK
    J Biomed Opt; 2014; 19(10):106011. PubMed ID: 25341071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy.
    Roberts MS; Dancik Y; Prow TW; Thorling CA; Lin LL; Grice JE; Robertson TA; König K; Becker W
    Eur J Pharm Biopharm; 2011 Apr; 77(3):469-88. PubMed ID: 21256962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation.
    Schwille P; Haupts U; Maiti S; Webb WW
    Biophys J; 1999 Oct; 77(4):2251-65. PubMed ID: 10512844
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.
    Singh AP; Krieger JW; Buchholz J; Charbon E; Langowski J; Wohland T
    Opt Express; 2013 Apr; 21(7):8652-68. PubMed ID: 23571955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-Free Visualization and Tracking of Gold Nanoparticles in Vasculature Using Multiphoton Luminescence.
    Burkitt S; Mehraein M; Stanciauskas RK; Campbell J; Fraser S; Zavaleta C
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33198113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chronic imaging of mitochondria in the murine cerebral vasculature using in vivo two-photon microscopy.
    Rutkai I; Evans WR; Bess N; Salter-Cid T; Čikić S; Chandra PK; Katakam PVG; Mostany R; Busija DW
    Am J Physiol Heart Circ Physiol; 2020 Jun; 318(6):H1379-H1386. PubMed ID: 32330090
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies.
    Jungjohann KL; Wheeler DR; Polsky R; Brozik SM; Brozik JA; Rudolph AR
    Micron; 2019 Apr; 119():54-63. PubMed ID: 30660856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber.
    Chang YC; Ye JY; Thomas T; Chen Y; Baker JR; Norris TB
    Opt Express; 2008 Aug; 16(17):12640-9. PubMed ID: 18711501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correction of spherical aberration in multi-focal multiphoton microscopy with spatial light modulator.
    Matsumoto N; Konno A; Ohbayashi Y; Inoue T; Matsumoto A; Uchimura K; Kadomatsu K; Okazaki S
    Opt Express; 2017 Mar; 25(6):7055-7068. PubMed ID: 28381046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NIR-emitting semiconducting polymer nanoparticles for in vivo two-photon vascular imaging.
    Gong XT; Xie W; Cao JJ; Zhang S; Pu K; Zhang HL
    Biomater Sci; 2020 May; 8(9):2666-2672. PubMed ID: 32253399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.