BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32629135)

  • 1. Genetically-programmed, mesenchymal stromal cell-laden & mechanically strong 3D bioprinted scaffolds for bone repair.
    Abu Awwad HAM; Thiagarajan L; Kanczler JM; Amer MH; Bruce G; Lanham S; Rumney RMH; Oreffo ROC; Dixon JE
    J Control Release; 2020 Sep; 325():335-346. PubMed ID: 32629135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization.
    Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R
    Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically tunable photo-cross-linkable bioinks for osteogenic differentiation of MSCs in 3D bioprinted constructs.
    Kamaraj M; Sreevani G; Prabusankar G; Rath SN
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112478. PubMed ID: 34857263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioprinting of Stem Cells in Multimaterial Scaffolds and Their Applications in Bone Tissue Engineering.
    Tharakan S; Khondkar S; Ilyas A
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D bioprinting of cartilaginous templates for large bone defect healing.
    Pitacco P; Sadowska JM; O'Brien FJ; Kelly DJ
    Acta Biomater; 2023 Jan; 156():61-74. PubMed ID: 35907556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells.
    Hou Y; Xie W; Achazi K; Cuellar-Camacho JL; Melzig MF; Chen W; Haag R
    Acta Biomater; 2018 Sep; 77():28-37. PubMed ID: 29981495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with
    Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the Translational Potential of Human Mesenchymal Progenitor Cells from Different Bone Entities for Autologous 3D Bioprinted Bone Grafts.
    Amler AK; Dinkelborg PH; Schlauch D; Spinnen J; Stich S; Lauster R; Sittinger M; Nahles S; Heiland M; Kloke L; Rendenbach C; Beck-Broichsitter B; Dehne T
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N; Ivanovski S; Vaquette C
    Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG
    Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoregenerative Potential of 3D-Printed Poly
    Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprinting EphrinB2-Modified Dental Pulp Stem Cells with Enhanced Osteogenic Capacity for Alveolar Bone Engineering.
    Wang W; Zhu Y; Li J; Geng T; Jia J; Wang X; Yuan C; Wang P
    Tissue Eng Part A; 2023 Apr; 29(7-8):244-255. PubMed ID: 36606680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation.
    Tavares MT; Gaspar VM; Monteiro MV; S Farinha JP; Baleizão C; Mano JF
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33455952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects.
    Shen M; Wang L; Gao Y; Feng L; Xu C; Li S; Wang X; Wu Y; Guo Y; Pei G
    Mater Today Bio; 2022 Dec; 16():100382. PubMed ID: 36033373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue.
    Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inkjet-bioprinted acrylated peptides and PEG hydrogel with human mesenchymal stem cells promote robust bone and cartilage formation with minimal printhead clogging.
    Gao G; Yonezawa T; Hubbell K; Dai G; Cui X
    Biotechnol J; 2015 Oct; 10(10):1568-77. PubMed ID: 25641582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.