BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32629171)

  • 1. Engineering extracellular matrix to improve drug delivery for cancer therapy.
    He X; Yang Y; Li L; Zhang P; Guo H; Liu N; Yang X; Xu F
    Drug Discov Today; 2020 Sep; 25(9):1727-1734. PubMed ID: 32629171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomedicine Strategies to Circumvent Intratumor Extracellular Matrix Barriers for Cancer Therapy.
    Xu X; Wu Y; Qian X; Wang Y; Wang J; Li J; Li Y; Zhang Z
    Adv Healthc Mater; 2022 Jan; 11(1):e2101428. PubMed ID: 34706400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities.
    Au JL; Yeung BZ; Wientjes MG; Lu Z; Wientjes MG
    Adv Drug Deliv Rev; 2016 Feb; 97():280-301. PubMed ID: 26686425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside.
    Stylianopoulos T; Munn LL; Jain RK
    Trends Cancer; 2018 Apr; 4(4):292-319. PubMed ID: 29606314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-Mediated Targeted Drug Delivery to Remodel Tumor Microenvironment for Cancer Therapy.
    Tang L; Mei Y; Shen Y; He S; Xiao Q; Yin Y; Xu Y; Shao J; Wang W; Cai Z
    Int J Nanomedicine; 2021; 16():5811-5829. PubMed ID: 34471353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles designed to regulate tumor microenvironment for cancer therapy.
    Li M; Zhang F; Su Y; Zhou J; Wang W
    Life Sci; 2018 May; 201():37-44. PubMed ID: 29577880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma.
    Liu Y; Zhou J; Li Q; Li L; Jia Y; Geng F; Zhou J; Yin T
    Adv Drug Deliv Rev; 2021 May; 172():80-103. PubMed ID: 33705874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Nanoparticle-Based Targeted Drug-Delivery Systems Against Cancer and Role of Tumor Microenvironment.
    Ashfaq UA; Riaz M; Yasmeen E; Yousaf MZ
    Crit Rev Ther Drug Carrier Syst; 2017; 34(4):317-353. PubMed ID: 29199588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic driven transport enhances penetration of positively charged peptide surfaces through tumor extracellular matrix.
    Mohanty RP; Liu X; Ghosh D
    Acta Biomater; 2020 Sep; 113():240-251. PubMed ID: 32428687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Potential of Nanotherapeutics in Targeting Tumor Microenvironment for Cancer Therapy.
    Muntimadugu E; Kommineni N; Khan W
    Pharmacol Res; 2017 Dec; 126():109-122. PubMed ID: 28511988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actively Targeted Nanoparticles for Drug Delivery to Tumor.
    Bi Y; Hao F; Yan G; Teng L; Lee RJ; Xie J
    Curr Drug Metab; 2016; 17(8):763-782. PubMed ID: 27335116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy.
    Du JZ; Mao CQ; Yuan YY; Yang XZ; Wang J
    Biotechnol Adv; 2014; 32(4):789-803. PubMed ID: 23933109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip.
    Kwak B; Ozcelikkale A; Shin CS; Park K; Han B
    J Control Release; 2014 Nov; 194():157-67. PubMed ID: 25194778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vascular and extracellular matrix remodeling by physical approaches to improve drug delivery at the tumor site.
    Gouarderes S; Mingotaud AF; Vicendo P; Gibot L
    Expert Opin Drug Deliv; 2020 Dec; 17(12):1703-1726. PubMed ID: 32838565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles.
    Yhee JY; Jeon S; Yoon HY; Shim MK; Ko H; Min J; Na JH; Chang H; Han H; Kim JH; Suh M; Lee H; Park JH; Kim K; Kwon IC
    J Control Release; 2017 Dec; 267():223-231. PubMed ID: 28917532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro models of tumor vessels and matrix: engineering approaches to investigate transport limitations and drug delivery in cancer.
    Seo BR; DelNero P; Fischbach C
    Adv Drug Deliv Rev; 2014 Apr; 69-70():205-216. PubMed ID: 24309015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular matrix component-derived nanoparticles for drug delivery and tissue engineering.
    Hogan KJ; Perez MR; Mikos AG
    J Control Release; 2023 Aug; 360():888-912. PubMed ID: 37482344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research Progress on the Influence of Tumor Extracellular Matrix Mechanic Properties on Nanodrug Delivery].
    Zhao T; Wu H; Chen S; Wang J; Liu Y; Li T
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 55(1):13-18. PubMed ID: 38322528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug delivery to solid tumors: the predictive value of the multicellular tumor spheroid model for nanomedicine screening.
    Millard M; Yakavets I; Zorin V; Kulmukhamedova A; Marchal S; Bezdetnaya L
    Int J Nanomedicine; 2017; 12():7993-8007. PubMed ID: 29184400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor Microenvironment-Sensitive Liposomes Penetrate Tumor Tissue via Attenuated Interaction of the Extracellular Matrix and Tumor Cells and Accompanying Actin Depolymerization.
    Suzuki S; Itakura S; Matsui R; Nakayama K; Nishi T; Nishimoto A; Hama S; Kogure K
    Biomacromolecules; 2017 Feb; 18(2):535-543. PubMed ID: 28055201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.