These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 32629264)
1. Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping. Hong H; Tsangaratos P; Ilia I; Loupasakis C; Wang Y Sci Total Environ; 2020 Nov; 742():140549. PubMed ID: 32629264 [TBL] [Abstract][Full Text] [Related]
2. Spatial Landslide Susceptibility Assessment Based on Novel Neural-Metaheuristic Geographic Information System Based Ensembles. Moayedi H; Osouli A; Tien Bui D; Foong LK Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671801 [TBL] [Abstract][Full Text] [Related]
3. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
4. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874 [TBL] [Abstract][Full Text] [Related]
5. Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods. Chen W; Tsangaratos P; Ilia I; Duan Z; Chen X Sci Total Environ; 2019 Sep; 684():31-49. PubMed ID: 31150874 [TBL] [Abstract][Full Text] [Related]
6. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Hong H; Tsangaratos P; Ilia I; Liu J; Zhu AX; Xu C Sci Total Environ; 2018 Jul; 630():1044-1056. PubMed ID: 29554726 [TBL] [Abstract][Full Text] [Related]
7. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China. Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086 [TBL] [Abstract][Full Text] [Related]
8. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Hong H; Tsangaratos P; Ilia I; Liu J; Zhu AX; Chen W Sci Total Environ; 2018 Jun; 625():575-588. PubMed ID: 29291572 [TBL] [Abstract][Full Text] [Related]
9. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Nsengiyumva JB; Luo G; Amanambu AC; Mind'je R; Habiyaremye G; Karamage F; Ochege FU; Mupenzi C Sci Total Environ; 2019 Apr; 659():1457-1472. PubMed ID: 31096356 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
12. Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling. Zhang T; Han L; Chen W; Shahabi H Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266608 [TBL] [Abstract][Full Text] [Related]
13. Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China. He W; Chen G; Zhao J; Lin Y; Qin B; Yao W; Cao Q Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904752 [TBL] [Abstract][Full Text] [Related]
14. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria. Ozioko OH; Igwe O Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278 [TBL] [Abstract][Full Text] [Related]
15. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Das S; Sarkar S; Kanungo DP Environ Monit Assess; 2022 Mar; 194(3):234. PubMed ID: 35229227 [TBL] [Abstract][Full Text] [Related]
16. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Dou J; Yunus AP; Tien Bui D; Merghadi A; Sahana M; Zhu Z; Chen CW; Khosravi K; Yang Y; Pham BT Sci Total Environ; 2019 Apr; 662():332-346. PubMed ID: 30690368 [TBL] [Abstract][Full Text] [Related]
17. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping. Moayedi H; Dehrashid AA Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850 [TBL] [Abstract][Full Text] [Related]
18. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models. Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153 [TBL] [Abstract][Full Text] [Related]
19. Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. Nhu VH; Mohammadi A; Shahabi H; Ahmad BB; Al-Ansari N; Shirzadi A; Clague JJ; Jaafari A; Chen W; Nguyen H Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32650595 [TBL] [Abstract][Full Text] [Related]
20. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology. Saha A; Tripathi L; Villuri VGK; Bhardwaj A Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]