BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32629267)

  • 41. Altered dynamics of forest recovery under a changing climate.
    Anderson-Teixeira KJ; Miller AD; Mohan JE; Hudiburg TW; Duval BD; Delucia EH
    Glob Chang Biol; 2013 Jul; 19(7):2001-21. PubMed ID: 23529980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long-term exposure to more frequent disturbances increases baseline carbon in some ecosystems: Mapping and quantifying the disturbance frequency-ecosystem C relationship.
    Buma B; Thompson T
    PLoS One; 2019; 14(2):e0212526. PubMed ID: 30789951
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC.
    Eastaugh CS; Pötzelsberger E; Hasenauer H
    Tree Physiol; 2011 Mar; 31(3):262-74. PubMed ID: 21512099
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple drivers of large-scale lichen decline in boreal forest canopies.
    Esseen PA; Ekström M; Grafström A; Jonsson BG; Palmqvist K; Westerlund B; Ståhl G
    Glob Chang Biol; 2022 May; 28(10):3293-3309. PubMed ID: 35156274
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing.
    Andrus RA; Hart SJ; Veblen TT
    Ecology; 2020 May; 101(5):e02998. PubMed ID: 32012254
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A large-scale field experiment of artificially caused landslides with replications revealed the response of the ground-dwelling beetle community to landslides.
    Furusawa J; Makoto K; Utsumi S
    Ecol Evol; 2023 Mar; 13(3):e9939. PubMed ID: 36969925
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes.
    Dobor L; Hlásny T; Rammer W; Zimová S; Barka I; Seidl R
    J Environ Manage; 2020 Jan; 254():109792. PubMed ID: 31731030
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Shallow landslide disposition in burnt European beech (Fagus sylvatica L.) forests.
    Gehring E; Conedera M; Maringer J; Giadrossich F; Guastini E; Schwarz M
    Sci Rep; 2019 Jun; 9(1):8638. PubMed ID: 31201364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Network analysis can guide resilience-based management in forest landscapes under global change.
    Mina M; Messier C; Duveneck M; Fortin MJ; Aquilué N
    Ecol Appl; 2021 Jan; 31(1):e2221. PubMed ID: 32866316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility.
    Aksoy H
    Environ Monit Assess; 2023 Nov; 195(12):1525. PubMed ID: 37994954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios.
    Mouri G; Nakano K; Tsuyama I; Tanaka N
    Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe.
    Senf C; Seidl R
    Glob Chang Biol; 2018 Mar; 24(3):1201-1211. PubMed ID: 28881439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stand structure, recruitment and growth dynamics in mixed subalpine spruce and Swiss stone pine forests in the Eastern Carpathians.
    Popa I; Nechita C; Hofgaard A
    Sci Total Environ; 2017 Nov; 598():1050-1057. PubMed ID: 28476078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diversification of forest management regimes secures tree microhabitats and bird abundance under climate change.
    Augustynczik ALD; Asbeck T; Basile M; Bauhus J; Storch I; Mikusiński G; Yousefpour R; Hanewinkel M
    Sci Total Environ; 2019 Feb; 650(Pt 2):2717-2730. PubMed ID: 30296777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pre-outbreak forest conditions mediate the effects of spruce beetle outbreaks on fuels in subalpine forests of Colorado.
    Mietkiewicz N; Kulakowski D; Veblen TT
    Ecol Appl; 2018 Mar; 28(2):457-472. PubMed ID: 29405527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. What is the role of disturbance in catalyzing spatial shifts in forest composition and tree species biomass under climate change?
    Liang Y; Gustafson EJ; He HS; Serra-Diaz JM; Duveneck MJ; Thompson JR
    Glob Chang Biol; 2023 Feb; 29(4):1160-1177. PubMed ID: 36349470
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Past and future evolution of Abies alba forests in Europe - comparison of a dynamic vegetation model with palaeo data and observations.
    Ruosch M; Spahni R; Joos F; Henne PD; van der Knaap WO; Tinner W
    Glob Chang Biol; 2016 Feb; 22(2):727-40. PubMed ID: 26316296
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Natural disturbance regimes as a guide for sustainable forest management in Europe.
    Aszalós R; Thom D; Aakala T; Angelstam P; Brūmelis G; Gálhidy L; Gratzer G; Hlásny T; Katzensteiner K; Kovács B; Knoke T; Larrieu L; Motta R; Müller J; Ódor P; Roženbergar D; Paillet Y; Pitar D; Standovár T; Svoboda M; Szwagrzyk J; Toscani P; Keeton WS
    Ecol Appl; 2022 Jul; 32(5):e2596. PubMed ID: 35340078
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.
    O'Donnell FC; Flatley WT; Springer AE; Fulé PZ
    Ecol Appl; 2018 Sep; 28(6):1459-1472. PubMed ID: 29939455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.