These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 32629366)
21. Resolving plant development in space and time with single-cell genomics. Nolan TM; Shahan R Curr Opin Plant Biol; 2023 Dec; 76():102444. PubMed ID: 37696725 [TBL] [Abstract][Full Text] [Related]
22. Advances and applications of single-cell sequencing technologies. Wang Y; Navin NE Mol Cell; 2015 May; 58(4):598-609. PubMed ID: 26000845 [TBL] [Abstract][Full Text] [Related]
23. Comprehensive single cell-resolution analysis of the role of chromatin regulators in early C. elegans embryogenesis. Krüger AV; Jelier R; Dzyubachyk O; Zimmerman T; Meijering E; Lehner B Dev Biol; 2015 Feb; 398(2):153-62. PubMed ID: 25446273 [TBL] [Abstract][Full Text] [Related]
25. Emerging Imaging and Genomic Tools for Developmental Systems Biology. Liu Z; Keller PJ Dev Cell; 2016 Mar; 36(6):597-610. PubMed ID: 27003934 [TBL] [Abstract][Full Text] [Related]
26. Understanding development and stem cells using single cell-based analyses of gene expression. Kumar P; Tan Y; Cahan P Development; 2017 Jan; 144(1):17-32. PubMed ID: 28049689 [TBL] [Abstract][Full Text] [Related]
27. Single-Cell Genomics: A Stepping Stone for Future Immunology Discoveries. Giladi A; Amit I Cell; 2018 Jan; 172(1-2):14-21. PubMed ID: 29328909 [TBL] [Abstract][Full Text] [Related]
28. The evolution of developmental biology through conceptual and technological revolutions. Liberali P; Schier AF Cell; 2024 Jul; 187(14):3461-3495. PubMed ID: 38906136 [TBL] [Abstract][Full Text] [Related]
29. Computational modelling in single-cell cancer genomics: methods and future directions. Zhang AW; Campbell KR Phys Biol; 2020 Sep; 17(6):061001. PubMed ID: 32759485 [TBL] [Abstract][Full Text] [Related]
30. Single-cell analyses to reveal hematopoietic stem cell fate decisions. Lunger I; Fawaz M; Rieger MA FEBS Lett; 2017 Aug; 591(15):2195-2212. PubMed ID: 28600837 [TBL] [Abstract][Full Text] [Related]
31. The Single-Cell Lab or How to Perform Single-Cell Molecular Analysis. Kirchner R; Alunni-Fabbroni M Methods Mol Biol; 2015; 1347():43-55. PubMed ID: 26374308 [TBL] [Abstract][Full Text] [Related]
32. Packaging development: how chromatin controls transcription in zebrafish embryogenesis. Horsfield JA Biochem Soc Trans; 2019 Apr; 47(2):713-724. PubMed ID: 30952803 [TBL] [Abstract][Full Text] [Related]
34. A transcriptome landscape of mouse embryogenesis. Fossat N; Pfister S; Tam PP Dev Cell; 2007 Dec; 13(6):761-2. PubMed ID: 18061558 [TBL] [Abstract][Full Text] [Related]
35. Message control in developmental transitions; deciphering chromatin's role using zebrafish genomics. Stapel LC; Vastenhouw NL Brief Funct Genomics; 2014 Mar; 13(2):106-20. PubMed ID: 24170706 [TBL] [Abstract][Full Text] [Related]
36. Recording development with single cell dynamic lineage tracing. McKenna A; Gagnon JA Development; 2019 Jun; 146(12):. PubMed ID: 31249005 [TBL] [Abstract][Full Text] [Related]
37. Draft genome of the medaka fish: a comprehensive resource for medaka developmental genetics and vertebrate evolutionary biology. Takeda H Dev Growth Differ; 2008 Jun; 50 Suppl 1():S157-66. PubMed ID: 18430160 [TBL] [Abstract][Full Text] [Related]
38. Bioinformatics approaches to single-cell analysis in developmental biology. Yalcin D; Hakguder ZM; Otu HH Mol Hum Reprod; 2016 Mar; 22(3):182-92. PubMed ID: 26358759 [TBL] [Abstract][Full Text] [Related]
39. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Engel KL; Mackiewicz M; Hardigan AA; Myers RM; Savic D Semin Cell Dev Biol; 2016 Sep; 57():40-50. PubMed ID: 27224938 [TBL] [Abstract][Full Text] [Related]