These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32629410)

  • 1. New assistive walker improved local dynamic stability in young healthy adults.
    Seiferheld BE; Frost J; Andersen C; Samani A
    J Electromyogr Kinesiol; 2020 Aug; 53():102441. PubMed ID: 32629410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical analysis of weight bearing force and muscle activation levels in the lower extremities during gait with a walker.
    Ishikura T
    Acta Med Okayama; 2001 Apr; 55(2):73-82. PubMed ID: 11332202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg muscle activity during walking with assistive devices at varying levels of weight bearing.
    Clark BC; Manini TM; Ordway NR; Ploutz-Snyder LL
    Arch Phys Med Rehabil; 2004 Sep; 85(9):1555-60. PubMed ID: 15375835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical effects of body weight support with a novel robotic walker for over-ground gait rehabilitation.
    Mun KR; Lim SB; Guo Z; Yu H
    Med Biol Eng Comput; 2017 Feb; 55(2):315-326. PubMed ID: 27193227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial weight-bearing gait using conventional assistive devices.
    Youdas JW; Kotajarvi BJ; Padgett DJ; Kaufman KR
    Arch Phys Med Rehabil; 2005 Mar; 86(3):394-8. PubMed ID: 15759217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of load carriage and footwear on lower extremity kinetics and kinematics during overground walking.
    Dames KD; Smith JD
    Gait Posture; 2016 Oct; 50():207-211. PubMed ID: 27649512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison of Muscular Activity During Gait Between Walking Sticks and a Walker in Patients With Adult Degenerative Scoliosis.
    Haddas R; Lieberman IH; Kakar RS
    Spine Deform; 2019 May; 7(3):454-466. PubMed ID: 31053316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do orthotic walkers affect knee and hip function during gait?
    Richards J; Payne K; Myatt D; Chohan A
    Prosthet Orthot Int; 2016 Feb; 40(1):137-41. PubMed ID: 25239143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restriction of pelvic lateral and rotational motions alters lower limb kinematics and muscle activation pattern during over-ground walking.
    Mun KR; Guo Z; Yu H
    Med Biol Eng Comput; 2016 Nov; 54(11):1621-1629. PubMed ID: 26830107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From normal to fast walking: Impact of cadence and stride length on lower extremity joint moments.
    Ardestani MM; Ferrigno C; Moazen M; Wimmer MA
    Gait Posture; 2016 May; 46():118-25. PubMed ID: 27131188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immediate effects of unilateral restricted ankle motion on gait kinematics in healthy subjects.
    Romkes J; Schweizer K
    Gait Posture; 2015 Mar; 41(3):835-40. PubMed ID: 25800648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinematic comparison of the use of walking sticks versus a rolling walker during gait in adult degenerative scoliosis patients.
    Haddas R; Villarreal J; Lieberman IH
    Spine Deform; 2020 Aug; 8(4):717-723. PubMed ID: 32124399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
    Smith AJJ; Lemaire ED; Nantel J
    PLoS One; 2018; 13(9):e0203934. PubMed ID: 30222772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of age on lower extremity joint kinematics and kinetics during level walking with Masai barefoot technology shoes.
    Buchecker M; Lindinger S; Pfusterschmied J; Müller E
    Eur J Phys Rehabil Med; 2013 Oct; 49(5):675-86. PubMed ID: 23792632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower limb angular velocity during walking at various speeds.
    Mentiplay BF; Banky M; Clark RA; Kahn MB; Williams G
    Gait Posture; 2018 Sep; 65():190-196. PubMed ID: 30558929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lower extremity joint coupling variability during gait in young adults with and without chronic ankle instability.
    Lilley T; Herb CC; Hart J; Hertel J
    Sports Biomech; 2018 Jun; 17(2):261-272. PubMed ID: 28610477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of minimalist footwear and stride length reduction on lower-extremity running mechanics and cumulative loading.
    Firminger CR; Edwards WB
    J Sci Med Sport; 2016 Dec; 19(12):975-979. PubMed ID: 27107980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of age and physical activity status on redistribution of joint work during walking.
    Buddhadev HH; Martin PE
    Gait Posture; 2016 Oct; 50():131-136. PubMed ID: 27607304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.