These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32629430)

  • 1. Spectral x-ray imaging: Conditions under which propagation-based phase-contrast is beneficial.
    Schaff F; Morgan KS; Paganin DM; Kitchen MJ
    Phys Med Biol; 2020 Oct; 65(20):205006. PubMed ID: 32629430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral Differential Phase Contrast X-Ray Radiography.
    Mechlem K; Sellerer T; Viermetz M; Herzen J; Pfeiffer F
    IEEE Trans Med Imaging; 2020 Mar; 39(3):578-587. PubMed ID: 31380752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material Decomposition Using Spectral Propagation-Based Phase-Contrast X-Ray Imaging.
    Schaff F; Morgan KS; Pollock JA; Croton LCP; Hooper SB; Kitchen MJ
    IEEE Trans Med Imaging; 2020 Dec; 39(12):3891-3899. PubMed ID: 32746132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical framework for comparing noise characteristics of spectral, differential phase-contrast and spectral differential phase-contrast x-ray imaging.
    Mechlem K; Sellerer T; Viermetz M; Herzen J; Pfeiffer F
    Phys Med Biol; 2020 Mar; 65(6):065010. PubMed ID: 31995518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Region-of-interest material decomposition from truncated energy-resolved CT.
    Schmidt TG; Pektas F
    Med Phys; 2011 Oct; 38(10):5657-66. PubMed ID: 21992382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral propagation-based x-ray phase-contrast computed tomography.
    Schaff F; Pollock JA; Morgan KS; Kitchen MJ
    J Med Imaging (Bellingham); 2022 May; 9(3):031506. PubMed ID: 35310451
    [No Abstract]   [Full Text] [Related]  

  • 7. Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.
    Shikhaliev PM
    Phys Med Biol; 2012 Mar; 57(6):1595-615. PubMed ID: 22398007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative material decomposition using linear iterative near-field phase retrieval dual-energy x-ray imaging.
    Li HT; Schaff F; Croton LCP; Morgan KS; Kitchen MJ
    Phys Med Biol; 2020 Sep; 65(18):185014. PubMed ID: 32946429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct quantitative material decomposition employing grating-based X-ray phase-contrast CT.
    Braig E; Böhm J; Dierolf M; Jud C; Günther B; Mechlem K; Allner S; Sellerer T; Achterhold K; Gleich B; Noël P; Pfeiffer D; Rummeny E; Herzen J; Pfeiffer F
    Sci Rep; 2018 Nov; 8(1):16394. PubMed ID: 30401876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise properties of grating-based x-ray phase contrast computed tomography.
    Köhler T; Jürgen Engel K; Roessl E
    Med Phys; 2011 Jul; 38 Suppl 1():S106. PubMed ID: 21978111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material decomposition with prior knowledge aware iterative denoising (MD-PKAID).
    Tao S; Rajendran K; McCollough CH; Leng S
    Phys Med Biol; 2018 Sep; 63(19):195003. PubMed ID: 30136655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sufficient statistics as a generalization of binning in spectral X-ray imaging.
    Wang AS; Pelc NJ
    IEEE Trans Med Imaging; 2011 Jan; 30(1):84-93. PubMed ID: 20682470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-material decomposition of spectral CT images via Fully Convolutional DenseNets.
    Wu X; He P; Long Z; Guo X; Chen M; Ren X; Chen P; Deng L; An K; Li P; Wei B; Feng P
    J Xray Sci Technol; 2019; 27(3):461-471. PubMed ID: 31177260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of a dual-energy-like imaging technique based on counting-integrating readout.
    Roessl E; Herrmann C; Kraft E; Proksa R
    Med Phys; 2011 Dec; 38(12):6416-28. PubMed ID: 22149825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of calibration methods on quantitative material decomposition in photon-counting spectral computed tomography using a maximum a posteriori estimator.
    Curtis TE; Roeder RK
    Med Phys; 2017 Oct; 44(10):5187-5197. PubMed ID: 28681402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Material decomposition from a single x-ray projection via single-grid phase contrast imaging.
    Groenendijk CF; Schaff F; Croton LCP; Kitchen MJ; Morgan KS
    Opt Lett; 2020 Jul; 45(14):4076-4079. PubMed ID: 32667358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.
    Granton PV; Pollmann SI; Ford NL; Drangova M; Holdsworth DW
    Med Phys; 2008 Nov; 35(11):5030-42. PubMed ID: 19070237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.