These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32629436)
1. Osteogenic differentiation of bone marrow mesenchymal stem cells on chitosan/gelatin scaffolds: gene expression profile and mechanical analysis. Papadogiannis F; Batsali A; Klontzas ME; Karabela M; Georgopoulou A; Mantalaris A; Zafeiropoulos NE; Chatzinikolaidou M; Pontikoglou C Biomed Mater; 2020 Oct; 15(6):064101. PubMed ID: 32629436 [TBL] [Abstract][Full Text] [Related]
2. Chitosan/gelatin scaffolds support bone regeneration. Georgopoulou A; Papadogiannis F; Batsali A; Marakis J; Alpantaki K; Eliopoulos AG; Pontikoglou C; Chatzinikolaidou M J Mater Sci Mater Med; 2018 May; 29(5):59. PubMed ID: 29730855 [TBL] [Abstract][Full Text] [Related]
3. Osteogenic differentiation of mesenchymal stem cells on pregenerated extracellular matrix scaffolds in the absence of osteogenic cell culture supplements. Thibault RA; Scott Baggett L; Mikos AG; Kasper FK Tissue Eng Part A; 2010 Feb; 16(2):431-40. PubMed ID: 19863274 [TBL] [Abstract][Full Text] [Related]
4. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
5. Adhesion, proliferation, and osteogenic differentiation of a mouse mesenchymal stem cell line (BMC9) seeded on novel melt-based chitosan/polyester 3D porous scaffolds. Costa-Pinto AR; Salgado AJ; Correlo VM; Sol P; Bhattacharya M; Charbord P; Reis RL; Neves NM Tissue Eng Part A; 2008 Jun; 14(6):1049-57. PubMed ID: 19230127 [TBL] [Abstract][Full Text] [Related]
6. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering. Mathews S; Bhonde R; Gupta PK; Totey S J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1825-34. PubMed ID: 24723571 [TBL] [Abstract][Full Text] [Related]
7. Stromal-cell-derived extracellular matrix promotes the proliferation and retains the osteogenic differentiation capacity of mesenchymal stem cells on three-dimensional scaffolds. Antebi B; Zhang Z; Wang Y; Lu Z; Chen XD; Ling J Tissue Eng Part C Methods; 2015 Feb; 21(2):171-81. PubMed ID: 24965227 [TBL] [Abstract][Full Text] [Related]
8. One size does not fit all: developing a cell-specific niche for in vitro study of cell behavior. Marinkovic M; Block TJ; Rakian R; Li Q; Wang E; Reilly MA; Dean DD; Chen XD Matrix Biol; 2016; 52-54():426-441. PubMed ID: 26780725 [TBL] [Abstract][Full Text] [Related]
9. Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Lei Y; Xu Z; Ke Q; Yin W; Chen Y; Zhang C; Guo Y Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():134-142. PubMed ID: 28024569 [TBL] [Abstract][Full Text] [Related]
10. The osteogenic differentiation of adult bone marrow and perinatal umbilical mesenchymal stem cells and matrix remodelling in three-dimensional collagen scaffolds. Schneider RK; Puellen A; Kramann R; Raupach K; Bornemann J; Knuechel R; Pérez-Bouza A; Neuss S Biomaterials; 2010 Jan; 31(3):467-80. PubMed ID: 19815272 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional culture of rat BMMSCs in a porous chitosan-gelatin scaffold: A promising association for bone tissue engineering in oral reconstruction. Miranda SC; Silva GA; Hell RC; Martins MD; Alves JB; Goes AM Arch Oral Biol; 2011 Jan; 56(1):1-15. PubMed ID: 20887975 [TBL] [Abstract][Full Text] [Related]
12. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. Li J; Yang B; Qian Y; Wang Q; Han R; Hao T; Shu Y; Zhang Y; Yao F; Wang C J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1498-510. PubMed ID: 25449538 [TBL] [Abstract][Full Text] [Related]
13. Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells. Hsieh WT; Liu YS; Lee YH; Rimando MG; Lin KH; Lee OK Acta Biomater; 2016 Mar; 32():210-222. PubMed ID: 26790775 [TBL] [Abstract][Full Text] [Related]
14. Preparation and Characterization of a Chitosan/Gelatin/Extracellular Matrix Scaffold and Its Application in Tissue Engineering. Wang X; Yu T; Chen G; Zou J; Li J; Yan J Tissue Eng Part C Methods; 2017 Mar; 23(3):169-179. PubMed ID: 28142371 [TBL] [Abstract][Full Text] [Related]
15. Modulation of in vitro attachment, proliferation and osteogenic differentiation of rat bone-marrow-derived stem cells using different molecular mass chitosans and their blends with gelatin. Ratanavaraporn J; Kanokpanont S; Tabata Y; Damrongsakkul S J Biomater Sci Polym Ed; 2010; 21(8-9):979-96. PubMed ID: 20507703 [TBL] [Abstract][Full Text] [Related]
16. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Kargozar S; Hashemian SJ; Soleimani M; Milan PB; Askari M; Khalaj V; Samadikuchaksaraie A; Hamzehlou S; Katebi AR; Latifi N; Mozafari M; Baino F Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():688-698. PubMed ID: 28415516 [TBL] [Abstract][Full Text] [Related]
17. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
18. Effectiveness of tissue engineered chitosan-gelatin composite scaffold loaded with human platelet gel in regeneration of critical sized radial bone defect in rat. Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A; Kamali A J Control Release; 2017 May; 254():65-74. PubMed ID: 28363521 [TBL] [Abstract][Full Text] [Related]
19. Extracellular matrix decorated polycaprolactone scaffolds for improved mesenchymal stem/stromal cell osteogenesis towards a patient-tailored bone tissue engineering approach. Silva JC; Carvalho MS; Udangawa RN; Moura CS; Cabral JMS; L da Silva C; Ferreira FC; Vashishth D; Linhardt RJ J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2153-2166. PubMed ID: 31916699 [TBL] [Abstract][Full Text] [Related]
20. Rational design of gelatin/nanohydroxyapatite cryogel scaffolds for bone regeneration by introducing chemical and physical cues to enhance osteogenesis of bone marrow mesenchymal stem cells. Shalumon KT; Liao HT; Kuo CY; Wong CB; Li CJ; P A M; Chen JP Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109855. PubMed ID: 31500067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]