These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32629773)

  • 1. Long-Term Evaluation of Breeding Scheme Alternatives for Endangered Honeybee Subspecies.
    Plate M; Bernstein R; Hoppe A; Bienefeld K
    Insects; 2020 Jun; 11(7):. PubMed ID: 32629773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of controlled mating in honeybee breeding.
    Plate M; Bernstein R; Hoppe A; Bienefeld K
    Genet Sel Evol; 2019 Dec; 51(1):74. PubMed ID: 31830903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simulation study of a honeybee breeding scheme accounting for polyandry, direct and maternal effects on colony performance.
    Kistler T; Basso B; Phocas F
    Genet Sel Evol; 2021 Sep; 53(1):71. PubMed ID: 34496761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of pooled semen insemination and single colony insemination as sustainable honeybee breeding strategies.
    Du M; Bernstein R; Hoppe A
    R Soc Open Sci; 2024 Jan; 11(1):231556. PubMed ID: 38298391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Potential of Instrumental Insemination for Sustainable Honeybee Breeding.
    Du M; Bernstein R; Hoppe A
    Genes (Basel); 2023 Sep; 14(9):. PubMed ID: 37761939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of infinitesimal and finite locus models for long-term breeding simulations with direct and maternal effects at the example of honeybees.
    Plate M; Bernstein R; Hoppe A; Bienefeld K
    PLoS One; 2019; 14(3):e0213270. PubMed ID: 30840680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mating structures for genomic selection breeding programs in aquaculture.
    Sonesson AK; Ødegård J
    Genet Sel Evol; 2016 Jun; 48(1):46. PubMed ID: 27342705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls.
    de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA
    J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of inbreeding in laying hens by applying optimum genetic contribution and gene flow theory.
    König S; Tsehay F; Sitzenstock F; von Borstel UU; Schmutz M; Preisinger R; Simianer H
    Poult Sci; 2010 Apr; 89(4):658-67. PubMed ID: 20308397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
    Kahi AK; Hirooka H
    J Anim Sci; 2005 Sep; 83(9):2021-32. PubMed ID: 16100056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing genetic gain, inbreeding, and bias attributable to different flock genetic means in alternative sheep sire referencing schemes.
    Kuehn LA; Notter DR; Lewis RM
    J Anim Sci; 2008 Mar; 86(3):526-35. PubMed ID: 18073281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation study on the efficiencies of MOET nucleus breeding schemes applying marker assisted selection in dairy cattle.
    Luo W; Wang Y; Zhang Y
    Sci China C Life Sci; 2009 Mar; 52(3):296-306. PubMed ID: 19294355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of incorrect genetic parameter estimates for single-trait and multi-trait genetic evaluations in honeybees.
    Du M; Bernstein R; Hoppe A; Bienefeld K
    J Anim Breed Genet; 2022 Nov; 139(6):666-678. PubMed ID: 35775281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pedigree relationships to control inbreeding in optimum-contribution selection realise more genetic gain than genomic relationships.
    Henryon M; Liu H; Berg P; Su G; Nielsen HM; Gebregiwergis GT; Sørensen AC
    Genet Sel Evol; 2019 Jul; 51(1):39. PubMed ID: 31286868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic progress in multistage dairy cattle breeding schemes using genetic markers.
    Schrooten C; Bovenhuis H; van Arendonk JA; Bijma P
    J Dairy Sci; 2005 Apr; 88(4):1569-81. PubMed ID: 15778327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic models of breeding scheme designs that incorporate genomic selection.
    Pryce JE; Goddard ME; Raadsma HW; Hayes BJ
    J Dairy Sci; 2010 Nov; 93(11):5455-66. PubMed ID: 20965361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broiler breeding strategies using indirect carcass measurements.
    Zerehdaran S; Vereijken AL; van Arendonk JA; Bovenhuis H; van der Waaij EH
    Poult Sci; 2005 Aug; 84(8):1214-21. PubMed ID: 16156205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.