These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 32629866)
61. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies. Fan MS; Abdullah AZ; Bhatia S ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096 [TBL] [Abstract][Full Text] [Related]
62. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2. Wang K; Li X; Ji S; Huang B; Li C ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151 [TBL] [Abstract][Full Text] [Related]
63. Efficient and robust reforming catalyst in severe reaction conditions by nanoprecursor reduction in confined space. Dacquin JP; Sellam D; Batiot-Dupeyrat C; Tougerti A; Duprez D; Royer S ChemSusChem; 2014 Feb; 7(2):631-7. PubMed ID: 24323543 [TBL] [Abstract][Full Text] [Related]
64. In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes. Crozier PA; Wang R; Sharma R Ultramicroscopy; 2008 Oct; 108(11):1432-40. PubMed ID: 18687527 [TBL] [Abstract][Full Text] [Related]
65. In Situ Investigation of Methane Dry Reforming on Metal/Ceria(111) Surfaces: Metal-Support Interactions and C-H Bond Activation at Low Temperature. Liu Z; Lustemberg P; Gutiérrez RA; Carey JJ; Palomino RM; Vorokhta M; Grinter DC; Ramírez PJ; Matolín V; Nolan M; Ganduglia-Pirovano MV; Senanayake SD; Rodriguez JA Angew Chem Int Ed Engl; 2017 Oct; 56(42):13041-13046. PubMed ID: 28815842 [TBL] [Abstract][Full Text] [Related]
66. The structure and catalytic properties of Rh-doped CeO Derevyannikova EA; Kardash TY; Kibis LS; Slavinskaya EM; Svetlichnyi VA; Stonkus OA; Ivanova AS; Boronin AI Phys Chem Chem Phys; 2017 Dec; 19(47):31883-31897. PubMed ID: 29177291 [TBL] [Abstract][Full Text] [Related]
67. Anion (fluoride)-doped ceria nanocrystals: synthesis, characterization, and its catalytic application to oxidative coupling of benzylamines. Ahmad S; Gopalaiah K; Chandrudu SN; Nagarajan R Inorg Chem; 2014 Feb; 53(4):2030-9. PubMed ID: 24495101 [TBL] [Abstract][Full Text] [Related]
68. Surfactant-assisted synthesis of ceria-titania-rich mesoporous silica materials and their catalytic activity towards photodegradation of organic dyes. Pal N; Mukherjee I; Chatterjee S; Cho EB Dalton Trans; 2017 Jul; 46(29):9577-9590. PubMed ID: 28702597 [TBL] [Abstract][Full Text] [Related]
69. Enhanced Activity and Stability of Gold/Ceria-Titania for the Low-Temperature Water-Gas Shift Reaction. Carter JH; Shah PM; Nowicka E; Freakley SJ; Morgan DJ; Golunski S; Hutchings GJ Front Chem; 2019; 7():443. PubMed ID: 31259170 [TBL] [Abstract][Full Text] [Related]
70. Autothermal reforming of propane over Ni catalysts supported on a variety of perovskites. Lim S; Moon D; Kim J; Kim Y; Park N; Shin J J Nanosci Nanotechnol; 2007 Nov; 7(11):4013-6. PubMed ID: 18047107 [TBL] [Abstract][Full Text] [Related]
71. Metal-support interaction and redox behavior of Pt(1 wt %)/Ce0.6Zr0.4O2. Deganello G; Giannici F; Martorana A; Pantaleo G; Prestianni A; Balerna A; Liotta LF; Longo A J Phys Chem B; 2006 May; 110(17):8731-9. PubMed ID: 16640429 [TBL] [Abstract][Full Text] [Related]
72. Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria-Zirconia Nanocrystals. Curran CD; Lu L; Jia Y; Kiely CJ; Berger BW; McIntosh S ACS Nano; 2017 Mar; 11(3):3337-3346. PubMed ID: 28212489 [TBL] [Abstract][Full Text] [Related]
73. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria. Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552 [TBL] [Abstract][Full Text] [Related]
74. Feasibility Synthesis and Characterization of Gadolinia Doped Ceria Coatings Obtained by Cathodic Arc Evaporation. Briois P; Aubry E; Ringuedé A; Cassir M; Billard A Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34063587 [TBL] [Abstract][Full Text] [Related]
75. Catalytic oxidation of soot on mesoporous ceria-based mixed oxides with cetyltrimethyl ammonium bromide (CTAB)-assisted synthesis. Zhu H; Xu J; Yichuan Y; Wang Z; Gao Y; Liu W; Yin H J Colloid Interface Sci; 2017 Dec; 508():1-13. PubMed ID: 28810164 [TBL] [Abstract][Full Text] [Related]
76. Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring. Cai W; Ye L; Zhang L; Ren Y; Yue B; Chen X; He H Materials (Basel); 2014 Mar; 7(3):2340-2355. PubMed ID: 28788570 [TBL] [Abstract][Full Text] [Related]
78. Influence of ceria modification on the properties of TiO2-ZrO2 supported V2O5 catalysts for selective catalytic reduction of NO by NH3. Zhang Y; Zhu X; Shen K; Xu H; Sun K; Zhou C J Colloid Interface Sci; 2012 Jun; 376(1):233-8. PubMed ID: 22464542 [TBL] [Abstract][Full Text] [Related]
79. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane. Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767 [TBL] [Abstract][Full Text] [Related]
80. Proton-Conducting La-Doped Ceria-Based Internal Reforming Layer for Direct Methane Solid Oxide Fuel Cells. Zhao J; Xu X; Zhou W; Blakey I; Liu S; Zhu Z ACS Appl Mater Interfaces; 2017 Oct; 9(39):33758-33765. PubMed ID: 28892349 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]