These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 32629938)
1. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Himiyama T; Okamoto Y Molecules; 2020 Jun; 25(13):. PubMed ID: 32629938 [TBL] [Abstract][Full Text] [Related]
2. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis. Lewis JC Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755 [TBL] [Abstract][Full Text] [Related]
3. LmrR: A Privileged Scaffold for Artificial Metalloenzymes. Roelfes G Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372 [TBL] [Abstract][Full Text] [Related]
7. Directed evolution of artificial metalloenzymes for in vivo metathesis. Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282 [TBL] [Abstract][Full Text] [Related]
8. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution. Liang AD; Serrano-Plana J; Peterson RL; Ward TR Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358 [TBL] [Abstract][Full Text] [Related]
9. Directed Evolution of Artificial Metalloenzymes: A Universal Means to Tune the Selectivity of Transition Metal Catalysts? Reetz MT Acc Chem Res; 2019 Feb; 52(2):336-344. PubMed ID: 30689339 [TBL] [Abstract][Full Text] [Related]
10. Towards the Evolution of Artificial Metalloenzymes-A Protein Engineer's Perspective. Markel U; Sauer DF; Schiffels J; Okuda J; Schwaneberg U Angew Chem Int Ed Engl; 2019 Mar; 58(14):4454-4464. PubMed ID: 30431222 [TBL] [Abstract][Full Text] [Related]
11. Recent advances in the design and optimization of artificial metalloenzymes. Morita I; Ward TR Curr Opin Chem Biol; 2024 Aug; 81():102508. PubMed ID: 39098211 [TBL] [Abstract][Full Text] [Related]
12. Intracellular Unnatural Catalysis Enabled by an Artificial Metalloenzyme. Okamoto Y; Kojima R Methods Mol Biol; 2021; 2312():287-300. PubMed ID: 34228297 [TBL] [Abstract][Full Text] [Related]
13. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. Ringenberg MR; Ward TR Chem Commun (Camb); 2011 Aug; 47(30):8470-6. PubMed ID: 21603692 [TBL] [Abstract][Full Text] [Related]
14. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism. Jeschek M; Panke S; Ward TR Trends Biotechnol; 2018 Jan; 36(1):60-72. PubMed ID: 29061328 [TBL] [Abstract][Full Text] [Related]
15. Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. Wu HL; Li XB; Tung CH; Wu LZ Chem Commun (Camb); 2020 Dec; 56(99):15496-15512. PubMed ID: 33300513 [TBL] [Abstract][Full Text] [Related]
16. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities. Heinisch T; Ward TR Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561 [TBL] [Abstract][Full Text] [Related]
18. Noble-Metal Substitution in Hemoproteins: An Emerging Strategy for Abiological Catalysis. Natoli SN; Hartwig JF Acc Chem Res; 2019 Feb; 52(2):326-335. PubMed ID: 30693758 [TBL] [Abstract][Full Text] [Related]
19. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors. Mirts EN; Bhagi-Damodaran A; Lu Y Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643 [TBL] [Abstract][Full Text] [Related]
20. Design of artificial metalloenzymes with multiple inorganic elements: The more the merrier. Jung SM; Lee J; Song WJ J Inorg Biochem; 2021 Oct; 223():111552. PubMed ID: 34332336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]