BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 32630082)

  • 21. Influence of Polymer Processing on the Double Electrical Percolation Threshold in PLA/PCL/GNP Nanocomposites.
    Masarra NA; Quantin JC; Batistella M; El Hage R; Pucci MF; Lopez-Cuesta JM
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced thermal conductivity and mechanical properties of a GNP reinforced Si
    Saleem A; Zhang Y; Gong H; Majeed MK; Jing J; Lin X; Ashfaq MZ
    RSC Adv; 2019 Dec; 9(68):39986-39992. PubMed ID: 35541375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal, Mechanical, and Morphological Characterisations of Graphene Nanoplatelet/Graphene Oxide/High-Hard-Segment Polyurethane Nanocomposite: A Comparative Study.
    Albozahid M; Naji HZ; Alobad ZK; Wychowaniec JK; Saiani A
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrical, Mechanical, and Thermal Properties of LDPE Graphene Nanoplatelets Composites Produced by Means of Melt Extrusion Process.
    Gaska K; Xu X; Gubanski S; Kádár R
    Polymers (Basel); 2017 Jan; 9(1):. PubMed ID: 30970688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calculating the Electrical Conductivity of Graphene Nanoplatelet Polymer Composites by a Monte Carlo Method.
    Fang C; Zhang J; Chen X; Weng GJ
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32521611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization.
    Evgin T; Turgut A; Hamaoui G; Spitalsky Z; Horny N; Micusik M; Chirtoc M; Sarikanat M; Omastova M
    Beilstein J Nanotechnol; 2020; 11():167-179. PubMed ID: 32082959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites.
    Sánchez-Romate XF; Jiménez-Suárez A; Campo M; Ureña A; Prolongo SG
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large Enhancement in Thermal Conductivity of Solvent-Cast Expanded Graphite/Polyetherimide Composites.
    Tarannum F; Danayat SS; Nayal A; Muthaiah R; Annam RS; Garg J
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683733
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermally Conductive Molten Salt for Thermal Energy Storage: Synergistic Effect of a Hybrid Graphite-Graphene Nanoplatelet Filler.
    Lavi A; Ohayon-Lavi A; Leibovitch Y; Hayun S; Ruse E; Regev O
    Glob Chall; 2023 Sep; 7(9):2300053. PubMed ID: 37745830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming.
    Hamidinejad M; Zhao B; Zandieh A; Moghimian N; Filleter T; Park CB
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30752-30761. PubMed ID: 30124039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the thermal conductivity and diffusivity of graphene nanoplatelets strips: a low-cost technique.
    Giovinco G; Sibilia S; Maffucci A
    Nanotechnology; 2023 Jun; 34(34):. PubMed ID: 37192604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interfacial Engineering of Graphene Nanosheets at MgO Particles for Thermal Conductivity Enhancement of Polymer Composites.
    Pan W; He M; Zhang L; Hou Y; Chen C
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31137667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Thermal and Dynamic Mechanical Properties of Synthetic/Natural Hybrid Composites with Graphene Nanoplateletes.
    Jesuarockiam N; Jawaid M; Zainudin ES; Thariq Hameed Sultan M; Yahaya R
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31247898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Multiscale Investigation on the Thermal Transport in Polydimethylsiloxane Nanocomposites: Graphene vs. Borophene.
    Di Pierro A; Mortazavi B; Noori H; Rabczuk T; Fina A
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34064564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites.
    Boden A; Boerner B; Kusch P; Firkowska I; Reich S
    Nano Lett; 2014 Jun; 14(6):3640-4. PubMed ID: 24839860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High Thermal Conductivity and Anisotropy Values of Aligned Graphite Flakes/Copper Foil Composites.
    Zeng F; Xue C; Ma H; Lin CT; Yu J; Jiang N
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermal, Mechanical, and Electrical Properties of Graphene Nanoplatelet/Graphene Oxide/ Polyurethane Hybrid Nanocomposite.
    Pokharel P; Lee SH; Lee DS
    J Nanosci Nanotechnol; 2015 Jan; 15(1):211-4. PubMed ID: 26328332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving Dispersion and Barrier Properties of Polyketone/Graphene Nanoplatelet Composites via Noncovalent Functionalization Using Aminopyrene.
    Cho J; Jeon I; Kim SY; Lim S; Jho JY
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27984-27994. PubMed ID: 28745478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Wood and Graphene Nanoplatelets (GNPs) Reinforced Polymer Composites.
    Al-Maqdasi Z; Gong G; Nyström B; Emami N; Joffe R
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32369956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocomposites of Rigid Polyurethane Foam and Graphene Nanoplates Obtained by Exfoliation of Natural Graphite in Polymeric 4,4'-Diphenylmethane Diisocyanate.
    Shin SR; Lee DS
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.