These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 32630082)

  • 61. Effects of Graphene Nanoplatelets and Cellular Structure on the Thermal Conductivity of Polysulfone Nanocomposite Foams.
    Abbasi H; Antunes M; Velasco JI
    Polymers (Basel); 2019 Dec; 12(1):. PubMed ID: 31877642
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Transparent, High-Thermal-Conductivity Ultradrawn Polyethylene/Graphene Nanocomposite Films.
    Pan X; Shen L; Schenning APHJ; Bastiaansen CWM
    Adv Mater; 2019 Oct; 31(40):e1904348. PubMed ID: 31441142
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites.
    Xia X; Hao J; Wang Y; Zhong Z; Weng GJ
    J Phys Condens Matter; 2017 May; 29(20):205702. PubMed ID: 28337974
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Experimental and Numerical Investigation of Flow and Alignment Behavior of Waste Tire-Derived Graphene Nanoplatelets in PA66 Matrix during Melt-Mixing and Injection.
    Dericiler K; Sadeghi HM; Yagci YE; Sas HS; Saner Okan B
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33808749
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electron and phonon transport in Au nanoparticle decorated graphene nanoplatelet nanostructured paper.
    Xiang J; Drzal LT
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):1325-32. PubMed ID: 21438537
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Graphene foam-embedded epoxy composites with significant thermal conductivity enhancement.
    Liu Z; Chen Y; Li Y; Dai W; Yan Q; Alam FE; Du S; Wang Z; Nishimura K; Jiang N; Lin CT; Yu J
    Nanoscale; 2019 Oct; 11(38):17600-17606. PubMed ID: 31264666
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites.
    Borca-Tasciuc T; Mazumder M; Son Y; Pal SK; Schadler LS; Ajayan PM
    J Nanosci Nanotechnol; 2007; 7(4-5):1581-8. PubMed ID: 17450929
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electrical Permittivity and Conductivity of a Graphene Nanoplatelet Contact in the Microwave Range.
    Bellucci S; Maffucci A; Maksimenko S; Micciulla F; Migliore MD; Paddubskaya A; Pinchera D; Schettino F
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30545012
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Thermal Diffusivity Mapping of Graphene Based Polymer Nanocomposites.
    Gresil M; Wang Z; Poutrel QA; Soutis C
    Sci Rep; 2017 Jul; 7(1):5536. PubMed ID: 28717154
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring.
    Zhu B; Liu J; Wang T; Han M; Valloppilly S; Xu S; Wang X
    ACS Omega; 2017 Jul; 2(7):3931-3944. PubMed ID: 31457697
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The stiffness-thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy.
    Li Y; Mehra N; Ji T; Yang X; Mu L; Gu J; Zhu J
    Nanoscale; 2018 Jan; 10(4):1695-1703. PubMed ID: 29308501
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electrically and Thermally Conductive Low Density Polyethylene-Based Nanocomposites Reinforced by MWCNT or Hybrid MWCNT/Graphene Nanoplatelets with Improved Thermo-Oxidative Stability.
    Paszkiewicz S; Szymczyk A; Pawlikowska D; Subocz J; Zenker M; Masztak R
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29690551
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Reprocessing of PLA/Graphene Nanoplatelets Nanocomposites.
    Botta L; Scaffaro R; Sutera F; Mistretta MC
    Polymers (Basel); 2017 Dec; 10(1):. PubMed ID: 30966053
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The piezoresistive effect in graphene-based polymeric composites.
    Tamburrano A; Sarasini F; De Bellis G; D'Aloia AG; Sarto MS
    Nanotechnology; 2013 Nov; 24(46):465702. PubMed ID: 24149437
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Highly Multifunctional GNP/Epoxy Nanocomposites: From Strain-Sensing to Joule Heating Applications.
    Sánchez-Romate XF; Sans A; Jiménez-Suárez A; Campo M; Ureña A; Prolongo SG
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33291391
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Heat transfer mechanism in graphene reinforced PEEK nanocomposites.
    Li D; Li T; Mao Z; Zhang Y; Wang B
    RSC Adv; 2023 Sep; 13(39):27599-27607. PubMed ID: 37720828
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dependence of Electrical Conductivity on Phase Morphology for Graphene Selectively Located at the Interface of Polypropylene/Polyethylene Composites.
    Tu C; Nagata K; Yan S
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159854
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Synthesis and Characterization of Multi-Walled Carbon Nanotube/Graphene Nanoplatelet Hybrid Film for Flexible Strain Sensors.
    Huang J; Her SC; Yang X; Zhi M
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30287756
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Thermal conductivity of graphene laminate.
    Malekpour H; Chang KH; Chen JC; Lu CY; Nika DL; Novoselov KS; Balandin AA
    Nano Lett; 2014 Sep; 14(9):5155-61. PubMed ID: 25111490
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electrical Conduction Behavior of High-Performance Microcellular Nanocomposites Made of Graphene Nanoplatelet-Filled Polysulfone.
    Abbasi H; Antunes M; Velasco JI
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33291598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.