These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 32630133)

  • 1. Dependent-Gaussian-Process-Based Learning of Joint Torques Using Wearable Smart Shoes for Exoskeleton.
    Yang J; Yin Y
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer.
    Chen Z; Guo Q; Li T; Yan Y; Jiang D
    IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wearable Robot Design Optimization Using Closed-Form Human-Robot Dynamic Interaction Model.
    Shahabpoor E; Gray B; Plummer A
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Deep Learning Models to Predict Prosthetic Ankle Torque.
    Prasanna C; Realmuto J; Anderson A; Rombokas E; Klute G
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining Different Wearable Devices to Assess Gait Speed in Real-World Settings.
    Zanoletti M; Bufano P; Bossi F; Di Rienzo F; Marinai C; Rho G; Vallati C; Carbonaro N; Greco A; Laurino M; Tognetti A
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38794059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of Marker-Less System for the Assessment of Upper Joints Reaction Forces in Exoskeleton Users.
    Pasinetti S; Nuzzi C; Covre N; Luchetti A; Maule L; Serpelloni M; Lancini M
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential Soft Sensor-Based Measurement of Interactive Force and Assistive Torque for a Robotic Hip Exoskeleton.
    Wang S; Zhang B; Yu Z; Yan Y
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divergent Component of Motion Planning and Adaptive Repetitive Control for Wearable Walking Exoskeletons.
    Huang P; Li Z; Zhou M; Kan Z
    IEEE Trans Cybern; 2024 Apr; 54(4):2244-2256. PubMed ID: 36455087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depth-aware pose estimation using deep learning for exoskeleton gait analysis.
    Wang Y; Pei Z; Wang C; Tang Z
    Sci Rep; 2023 Dec; 13(1):22681. PubMed ID: 38114592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gait stability evaluation method based on wearable acceleration sensors.
    Weng X; Mei C; Gao F; Wu X; Zhang Q; Liu G
    Math Biosci Eng; 2023 Nov; 20(11):20002-20024. PubMed ID: 38052634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart wearable insoles in industrial environments: A systematic review.
    Abdollahi M; Zhou Q; Yuan W
    Appl Ergon; 2024 Jul; 118():104250. PubMed ID: 38442642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual Physical Coupling of Two Lower-Limb Exoskeletons.
    Kucuktabak EB; Wen Y; Short M; Demirbas E; Lynch K; Pons J
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. State-Based Versus Time-Based Estimation of the Gait Phase for Hip Exoskeletons in Steady and Transient Walking.
    Ye T; Manzoori AR; Ijspeert A; Bouri M
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementing Gait Kinematic Trajectory Forecasting Models on an Embedded System.
    Shayne M; Molina LA; Hu B; Chomiak T
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Gait Phase and Task Estimation for Controlling a Powered Ankle Exoskeleton on Extremely Uneven Terrain.
    Medrano RL; Thomas GC; Keais CG; Rouse EJ; Gregg RD
    IEEE Trans Robot; 2023 Jun; 39(3):2170-2182. PubMed ID: 37304231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait analysis using digital biomarkers including smart shoes in lumbar spinal canal stenosis: a scoping review.
    Morimoto T; Hirata H; Kobayashi T; Tsukamoto M; Yoshihara T; Toda Y; Mawatari M
    Front Med (Lausanne); 2023; 10():1302136. PubMed ID: 38162877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. simMACT, a Software Demonstrator to Improve Maximum Actuation Joint Torques Simulation for Ergonomics Assessment.
    Savin JH; Rezzoug N
    J Biomech Eng; 2024 Apr; 146(4):. PubMed ID: 38319176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plugging Energy Regeneration Improves Braking Torque at Low Speed Instead of Dynamic Energy Regeneration.
    Zhang J; Liu X; Feng Y
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-5. PubMed ID: 37941252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lower Limb Joint Torque Prediction Using Long Short-Term Memory Network and Gaussian Process Regression.
    Wang M; Chen Z; Zhan H; Zhang J; Wu X; Jiang D; Guo Q
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067948
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.