These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 32630376)

  • 1. Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges.
    Čuljak I; Lučev Vasić Ž; Mihaldinec H; Džapo H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive study of channel estimation for WBAN-based healthcare systems: feasibility of using multiband UWB.
    Islam SM; Kwak KS
    J Med Syst; 2012 Jun; 36(3):1553-67. PubMed ID: 21046206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a multi-access scheme and asynchronous transmit-only UWB for wireless body area networks.
    Keong HC; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6906-9. PubMed ID: 19964453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved ultra wideband channel model including the frequency-dependent attenuation for in-body communications.
    Khaleghi A; Chávez-Santiago R; Balasingham I
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1631-4. PubMed ID: 23366219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of scattering, reflectivity, and transmitivity in WBAN channel: feasibility of using UWB.
    Kabir MH; Ashrafuzzaman K; Chowdhury MS; Kwak KS
    Sensors (Basel); 2010; 10(6):5503-29. PubMed ID: 22219673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy analysis of LDPC coded APSK modulated differential space-time-frequency coded for wireless body area network using MB-pulsed OFDM UWB technology.
    Manimegalai CT; Gauni S; Kalimuthu K
    Technol Health Care; 2017 Dec; 25(6):1189-1194. PubMed ID: 28946601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A framework for UWB-based communication and location tracking systems for wireless sensor networks.
    Chóliz J; Hernández A; Valdovinos A
    Sensors (Basel); 2011; 11(9):9045-68. PubMed ID: 22164120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey on intrabody communications for body area network applications.
    Seyedi M; Kibret B; Lai DT; Faulkner M
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2067-79. PubMed ID: 23542945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the antenna-body distance on the on-ext and on-on channel link path gain in UWB WBAN applications.
    Tuovinen T; Kumpuniemi T; Hamalainen M; Yekeh Yazdandoost K; Iinatti J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1242-5. PubMed ID: 24109919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard.
    Goswami D; Sarma KC; Mahanta A
    Healthc Technol Lett; 2016 Jun; 3(2):129-35. PubMed ID: 27382482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless Body Area Sensor Networks: Survey of MAC and Routing Protocols for Patient Monitoring under IEEE 802.15.4 and IEEE 802.15.6.
    Akbar MS; Hussain Z; Sheng M; Shankaran R
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks.
    Kopta V; Farserotu J; Enz C
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A UWB wireless capsule endoscopy device.
    Thotahewa KM; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6977-80. PubMed ID: 25571601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Survey on LPWAN Technologies in WBAN for Remote Health-Care Monitoring.
    Olatinwo DD; Abu-Mahfouz A; Hancke G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On IEEE 802.15.6 IR-UWB receivers - simulations for DBPSK modulation.
    Niemelä V; Hämäläinen M; Iinatti J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1676-9. PubMed ID: 24110027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Impulse Radio Intrabody Communication System for Wireless Body Area Networks.
    Cai Z; Seyedi M; Zhang W; Rivet F; Lai DTH
    J Med Biol Eng; 2017; 37(1):74-84. PubMed ID: 28286464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Dependable Internet of Medical Things: IEEE 802.15.6 Ultra-Wideband Physical Layer Utilizing Superorthogonal Convolutional Code.
    Takabayashi K; Tanaka H; Sakakibara K
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channel models for wireless body area networks.
    Takizawa K; Aoyagi A; Takada J; Katayama N; Yekeh K; Takehiko Y; Kohno KR
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1549-52. PubMed ID: 19162968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Technological Requirements and Challenges in Wireless Body Area Networks for Health Monitoring: A Comprehensive Survey.
    Zhong L; He S; Lin J; Wu J; Li X; Pang Y; Li Z
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Wireless human body communication technology].
    Sun L; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Dec; 31(6):1389-93. PubMed ID: 25868265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.