BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32630446)

  • 1. Termite Societies Promote the Taxonomic and Functional Diversity of Archaeal Communities in Mound Soils.
    Wakung'oli M; Amoo AE; Enagbonma BJ; Babalola OO
    Biology (Basel); 2020 Jun; 9(6):. PubMed ID: 32630446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic profiling of bacterial diversity and community structure in termite mounds and surrounding soils.
    Enagbonma BJ; Ajilogba CF; Babalola OO
    Arch Microbiol; 2020 Dec; 202(10):2697-2709. PubMed ID: 32725600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profiling the Functional Diversity of Termite Mound Soil Bacteria as Revealed by Shotgun Sequencing.
    Enagbonma BJ; Aremu BR; Babalola OO
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31450818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.
    Fall S; Hamelin J; Ndiaye F; Assigbetse K; Aragno M; Chotte JL; Brauman A
    Appl Environ Microbiol; 2007 Aug; 73(16):5199-208. PubMed ID: 17574999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metagenomics Reveals the Microbiome Multifunctionalities of Environmental Importance From Termite Mound Soils.
    Enagbonma BJ; Babalola OO
    Bioinform Biol Insights; 2023; 17():11779322231184025. PubMed ID: 37424707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial patterning of soil microbial communities created by fungus-farming termites.
    Baker CCM; Castillo Vardaro JA; Doak DF; Pansu J; Puissant J; Pringle RM; Tarnita CE
    Mol Ecol; 2020 Nov; 29(22):4487-4501. PubMed ID: 32761930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of termite mounds and its surrounding soils as soil amendments in smallholder farms in central Uganda.
    Apori SO; Murongo M; Hanyabui E; Atiah K; Byalebeka J
    BMC Res Notes; 2020 Aug; 13(1):397. PubMed ID: 32854759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Termite mound formation reduces the abundance and diversity of soil resistomes.
    Yan ZZ; Chen QL; Li CY; Nguyen BT; Zhu YG; He JZ; Hu HW
    Environ Microbiol; 2021 Dec; 23(12):7661-7670. PubMed ID: 34097804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Termite mounds contain soil-derived methanotroph communities kinetically adapted to elevated methane concentrations.
    Chiri E; Greening C; Lappan R; Waite DW; Jirapanjawat T; Dong X; Arndt SK; Nauer PA
    ISME J; 2020 Nov; 14(11):2715-2731. PubMed ID: 32709975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Community Composition and Abundance of Bacterial, Archaeal and Nitrifying Populations in Savanna Soils on Contrasting Bedrock Material in Kruger National Park, South Africa.
    Rughöft S; Herrmann M; Lazar CS; Cesarz S; Levick SR; Trumbore SE; Küsel K
    Front Microbiol; 2016; 7():1638. PubMed ID: 27807431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils.
    Zhang Q; Li Y; Xing J; Brookes PC; Xu J
    Sci Total Environ; 2019 Mar; 658():723-731. PubMed ID: 30583167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogeographic Distribution Patterns of the Archaeal Communities Across the Black Soil Zone of Northeast China.
    Liu J; Yu Z; Yao Q; Sui Y; Shi Y; Chu H; Tang C; Franks AE; Jin J; Liu X; Wang G
    Front Microbiol; 2019; 10():23. PubMed ID: 30740093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the microbiota data from termite mound soil in South Africa using shotgun metagenomics.
    Enagbonma BJ; Amoo AE; Babalola OO
    Data Brief; 2020 Feb; 28():104802. PubMed ID: 31832528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects of Using Termite Mound Soil OrganicAmendment for Enhancing Soil Nutrition inSouthern Africa.
    Chisanga K; Mbega ER; Ndakidemi PA
    Plants (Basel); 2020 May; 9(5):. PubMed ID: 32443902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution and diversity of archaeal communities in selected Chinese soils.
    Cao P; Zhang LM; Shen JP; Zheng YM; Di HJ; He JZ
    FEMS Microbiol Ecol; 2012 Apr; 80(1):146-58. PubMed ID: 22220938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of soil properties on archaeal diversity and distribution in the McMurdo Dry Valleys, Antarctica.
    Richter I; Herbold CW; Lee CK; McDonald IR; Barrett JE; Cary SC
    FEMS Microbiol Ecol; 2014 Aug; 89(2):347-59. PubMed ID: 24646164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of land use on bacterial and archaeal diversity and community structures in three natural ecosystems and one agricultural soil.
    Lynn TM; Liu Q; Hu Y; Yuan H; Wu X; Khai AA; Wu J; Ge T
    Arch Microbiol; 2017 Jul; 199(5):711-721. PubMed ID: 28233042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of nutrient hotspots for grazing ungulates in a Miombo ecosystem, Tanzania.
    Mayengo G; Piel AK; Treydte AC
    PLoS One; 2020; 15(3):e0230192. PubMed ID: 32226036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia).
    Schneider D; Engelhaupt M; Allen K; Kurniawan S; Krashevska V; Heinemann M; Nacke H; Wijayanti M; Meryandini A; Corre MD; Scheu S; Daniel R
    Front Microbiol; 2015; 6():1339. PubMed ID: 26696965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Archaeal community in a human-disturbed watershed in southeast China: diversity, distribution, and responses to environmental changes.
    Hu A; Wang H; Li J; Liu J; Chen N; Yu CP
    Appl Microbiol Biotechnol; 2016 May; 100(10):4685-98. PubMed ID: 26810199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.