These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 32630464)
21. Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites. Tercjak A; Gutierrez J; Barud HS; Domeneguetti RR; Ribeiro SJ ACS Appl Mater Interfaces; 2015 Feb; 7(7):4142-50. PubMed ID: 25633223 [TBL] [Abstract][Full Text] [Related]
22. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria. Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790 [TBL] [Abstract][Full Text] [Related]
23. Multilayer bacterial cellulose/resole nanocomposites: Relationship between structural and electro-thermo-mechanical properties. Sheykhnazari S; Tabarsa T; Mashkour M; Khazaeian A; Ghanbari A Int J Biol Macromol; 2018 Dec; 120(Pt B):2115-2122. PubMed ID: 30218738 [TBL] [Abstract][Full Text] [Related]
24. Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose. Atef M; Rezaei M; Behrooz R Int J Biol Macromol; 2014 Sep; 70():537-44. PubMed ID: 25036597 [TBL] [Abstract][Full Text] [Related]
25. Engineering and Characterization of Bacterial Nanocellulose Films as Low Cost and Flexible Sensor Material. Mangayil R; Rajala S; Pammo A; Sarlin E; Luo J; Santala V; Karp M; Tuukkanen S ACS Appl Mater Interfaces; 2017 Jun; 9(22):19048-19056. PubMed ID: 28520408 [TBL] [Abstract][Full Text] [Related]
29. High Molecular Weight Mixed-Linkage Glucan as a Mechanical and Hydration Modulator of Bacterial Cellulose: Characterization by Advanced NMR Spectroscopy. Muñoz-García JC; Corbin KR; Hussain H; Gabrielli V; Koev T; Iuga D; Round AN; Mikkelsen D; Gunning PA; Warren FJ; Khimyak YZ Biomacromolecules; 2019 Nov; 20(11):4180-4190. PubMed ID: 31518115 [TBL] [Abstract][Full Text] [Related]
30. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment. Gamelas JA; Pedrosa J; Lourenço AF; Mutjé P; González I; Chinga-Carrasco G; Singh G; Ferreira PJ Micron; 2015 May; 72():28-33. PubMed ID: 25768897 [TBL] [Abstract][Full Text] [Related]
31. Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. Hu W; Chen S; Yang Z; Liu L; Wang H J Phys Chem B; 2011 Jul; 115(26):8453-7. PubMed ID: 21671578 [TBL] [Abstract][Full Text] [Related]
32. One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Si H; Luo H; Xiong G; Yang Z; Raman SR; Guo R; Wan Y Macromol Rapid Commun; 2014 Oct; 35(19):1706-11. PubMed ID: 25180660 [TBL] [Abstract][Full Text] [Related]
33. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Ul-Islam M; Khan T; Park JK Carbohydr Polym; 2012 Aug; 89(4):1189-97. PubMed ID: 24750931 [TBL] [Abstract][Full Text] [Related]
34. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Hamou KB; Kaddami H; Dufresne A; Boufi S; Magnin A; Erchiqui F Carbohydr Polym; 2018 Feb; 181():1061-1070. PubMed ID: 29253932 [TBL] [Abstract][Full Text] [Related]
35. Hybrid nanocellulose decorated with silver nanoparticles as reinforcing filler with antibacterial properties. Errokh A; Magnin A; Putaux JL; Boufi S Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110044. PubMed ID: 31546437 [TBL] [Abstract][Full Text] [Related]
36. Microporous bacterial cellulose as a potential scaffold for bone regeneration. Zaborowska M; Bodin A; Bäckdahl H; Popp J; Goldstein A; Gatenholm P Acta Biomater; 2010 Jul; 6(7):2540-7. PubMed ID: 20060935 [TBL] [Abstract][Full Text] [Related]