These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32630863)

  • 1. Transverse drag of slow light in moving atomic vapor.
    Solomons Y; Banerjee C; Smartsev S; Friedman J; Eger D; Firstenberg O; Davidson N
    Opt Lett; 2020 Jul; 45(13):3431-3434. PubMed ID: 32630863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fresnel light drag in a coherently driven moving medium.
    Artoni M; Carusotto I; La Rocca GC; Bassani F
    Phys Rev Lett; 2001 Mar; 86(12):2549-52. PubMed ID: 11289977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Drag Enhancement by a Highly Dispersive Rubidium Vapor.
    Safari A; De Leon I; Mirhosseini M; Magaña-Loaiza OS; Boyd RW
    Phys Rev Lett; 2016 Jan; 116(1):013601. PubMed ID: 26799017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Fizeau drag from Dirac electrons in monolayer graphene.
    Zhao W; Zhao S; Li H; Wang S; Wang S; Utama MIB; Kahn S; Jiang Y; Xiao X; Yoo S; Watanabe K; Taniguchi T; Zettl A; Wang F
    Nature; 2021 Jun; 594(7864):517-521. PubMed ID: 34163053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elimination of the diffraction of arbitrary images imprinted on slow light.
    Firstenberg O; Shuker M; Davidson N; Ron A
    Phys Rev Lett; 2009 Jan; 102(4):043601. PubMed ID: 19257416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow light beam splitter.
    Xiao Y; Klein M; Hohensee M; Jiang L; Phillips DF; Lukin MD; Walsworth RL
    Phys Rev Lett; 2008 Jul; 101(4):043601. PubMed ID: 18764327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electromagnetically-induced transparency and slow light in GaAs/AlGaAs multiple quantum wells in a transient regime.
    Ma SM; Xu H; Ham BS
    Opt Express; 2009 Aug; 17(17):14902-8. PubMed ID: 19687969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow light with cavity electromagnetically induced transparency.
    Zhang J; Hernandez G; Zhu Y
    Opt Lett; 2008 Jan; 33(1):46-8. PubMed ID: 18157253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially dependent electromagnetically induced transparency.
    Radwell N; Clark TW; Piccirillo B; Barnett SM; Franke-Arnold S
    Phys Rev Lett; 2015 Mar; 114(12):123603. PubMed ID: 25860744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonparaxial self-accelerating beams in an atomic vapor with electromagnetically induced transparency.
    Zhong H; Zhang Y; Zhang Z; Li C; Zhang D; Zhang Y; Belić MR
    Opt Lett; 2016 Dec; 41(24):5644-5647. PubMed ID: 27973479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of light in a moving photonic lattice via atomic coherence.
    Zhang Z; Shen Y; Ning S; Liang S; Feng Y; Li C; Zhang Y; Xiao M
    Opt Lett; 2021 Sep; 46(17):4096-4099. PubMed ID: 34469948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Electromagnetically Induced Transparency and Fano Resonances in Hybrid BEC-Optomechanics.
    Yasir KA; Liu WM
    Sci Rep; 2016 Mar; 6():22651. PubMed ID: 26955789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusive Fizeau Drag in Spatiotemporal Thermal Metamaterials.
    Xu L; Xu G; Huang J; Qiu CW
    Phys Rev Lett; 2022 Apr; 128(14):145901. PubMed ID: 35476493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-Enhanced Velocimetry with Doppler-Broadened Atomic Vapor.
    Chen Z; Lim HM; Huang C; Dumke R; Lan SY
    Phys Rev Lett; 2020 Mar; 124(9):093202. PubMed ID: 32202858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting the transverse spin density of light via electromagnetically induced transparency.
    Liu J; Wu J
    Opt Express; 2022 Jun; 30(13):24009-24019. PubMed ID: 36225071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fresnel drag in space-time-modulated metamaterials.
    Huidobro PA; Galiffi E; Guenneau S; Craster RV; Pendry JB
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):24943-24948. PubMed ID: 31767741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis and optimization of channelization architecture for wideband slow light in atomic vapors.
    Dutton Z; Bashkansky M; Steiner M; Reintjes J
    Opt Express; 2006 Jun; 14(12):4978-91. PubMed ID: 19516657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stopping light via hot atoms.
    Kocharovskaya O; Rostovtsev Y; Scully MO
    Phys Rev Lett; 2001 Jan; 86(4):628-31. PubMed ID: 11177898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-Doppler absorption narrowing in atomic vapor at two intense laser fields.
    Krmpot A; Mijailović M; Panić B; Lukić D; Kovacević A; Pantelić D; Jelenković B
    Opt Express; 2005 Mar; 13(5):1448-56. PubMed ID: 19495020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical control of an Airy beam via four-wave mixing and six-wave mixing.
    Li X; Gao Y; Lin Y; Fang W; Zhang J; Wang Z; Zhang Y
    Opt Lett; 2020 May; 45(10):2930-2933. PubMed ID: 32412503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.