These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32630863)

  • 21. Spatially modulated thermal light in atomic medium for enhanced ghost imaging.
    Cao M; Wang J; Yang X; Qiu S; Gao H; Li F
    Sci Rep; 2017 Aug; 7(1):8015. PubMed ID: 28808324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coherent control of low loss surface polaritons.
    Kamli A; Moiseev SA; Sanders BC
    Phys Rev Lett; 2008 Dec; 101(26):263601. PubMed ID: 19113770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fizeau drag in graphene plasmonics.
    Dong Y; Xiong L; Phinney IY; Sun Z; Jing R; McLeod AS; Zhang S; Liu S; Ruta FL; Gao H; Dong Z; Pan R; Edgar JH; Jarillo-Herrero P; Levitov LS; Millis AJ; Fogler MM; Bandurin DA; Basov DN
    Nature; 2021 Jun; 594(7864):513-516. PubMed ID: 34163054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-dimensional all-optical spatial light modulation with high speed in coherent media.
    Zhao L; Wang T; Yelin SF
    Opt Lett; 2009 Jul; 34(13):1930-2. PubMed ID: 19571955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copropagating superluminal and slow light manifested by electromagnetically assisted nonlinear optical processes.
    Zhang J; Hernandez G; Zhu Y
    Opt Lett; 2006 Sep; 31(17):2598-600. PubMed ID: 16902631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Image routing via atomic spin coherence.
    Wang L; Sun JX; Luo MX; Sun YH; Wang XX; Chen Y; Kang ZH; Wang HH; Wu JH; Gao JY
    Sci Rep; 2015 Dec; 5():18179. PubMed ID: 26658846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical precursors with electromagnetically induced transparency in cold atoms.
    Wei D; Chen JF; Loy MM; Wong GK; Du S
    Phys Rev Lett; 2009 Aug; 103(9):093602. PubMed ID: 19792796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-frequency vacuum squeezing via polarization self-rotation in Rb vapor.
    Mikhailov EE; Novikova I
    Opt Lett; 2008 Jun; 33(11):1213-5. PubMed ID: 18516177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials.
    Xu Q; Su X; Ouyang C; Xu N; Cao W; Zhang Y; Li Q; Hu C; Gu J; Tian Z; Azad AK; Han J; Zhang W
    Opt Lett; 2016 Oct; 41(19):4562-4565. PubMed ID: 27749881
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultraslow weak-light solitons and their storage and retrieval in a kagome-structured hollow-core photonic crystal fiber.
    Xu D; Chen Z; Huang G
    Opt Express; 2017 Aug; 25(16):19094-19111. PubMed ID: 29041103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drag thermopower in nanowires and bulk potassium crystals under the conditions of competition between the boundary and bulk mechanisms of phonon relaxation.
    Kuleyev II; Kuleyev IG
    J Phys Condens Matter; 2019 Sep; 31(37):375701. PubMed ID: 31167176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chaos in an electromagnetically induced transparent medium inside an optical cavity.
    Yang W; Joshi A; Xiao M
    Phys Rev Lett; 2005 Aug; 95(9):093902. PubMed ID: 16197216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observation of electromagnetically induced transparency and slow light in the dark state--bright state basis.
    Lauprêtre T; Ruggiero J; Ghosh R; Bretenaker F; Goldfarb F
    Opt Express; 2009 Oct; 17(22):19444-50. PubMed ID: 19997164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electromagnetically induced transparency in an all-dielectric nano-metamaterial for slow light application.
    Wang Q; Yu L; Gao H; Chu S; Peng W
    Opt Express; 2019 Nov; 27(24):35012-35026. PubMed ID: 31878678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Slow-flow measurements and fluid dynamics analysis using the Fresnel drag effect.
    de Carvalho RT; Blake J
    Appl Opt; 1994 Sep; 33(25):6073-7. PubMed ID: 20936023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Frequency matching in light-storage spectroscopy of atomic Raman transitions.
    Karpa L; Nikoghosyan G; Vewinger F; Fleischhauer M; Weitz M
    Phys Rev Lett; 2009 Aug; 103(9):093601. PubMed ID: 19792795
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level.
    Höckel D; Benson O
    Phys Rev Lett; 2010 Oct; 105(15):153605. PubMed ID: 21230904
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene.
    Shi X; Han D; Dai Y; Yu Z; Sun Y; Chen H; Liu X; Zi J
    Opt Express; 2013 Nov; 21(23):28438-43. PubMed ID: 24514355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electromagnetically induced transparency with squeezed vacuum.
    Akamatsu D; Akiba K; Kozuma M
    Phys Rev Lett; 2004 May; 92(20):203602. PubMed ID: 15169353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superluminal propagation of pulsed pseudo-thermal light in atomic vapor.
    Bae IH; Cho YW; Lee HJ; Kim YH; Moon HS
    Opt Express; 2010 Sep; 18(19):19693-9. PubMed ID: 20940864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.