BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32630926)

  • 1. Tuning of the polariton modes induced by longitudinal strong coupling in the graphene hybridized DBR cavity.
    Zhang K; Liu Y; Xia F; Li S; Kong W
    Opt Lett; 2020 Jul; 45(13):3669-3672. PubMed ID: 32630926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure.
    Hu J; Yao E; Xie W; Liu W; Li D; Lu Y; Zhan Q
    Opt Express; 2019 Jun; 27(13):18642-18652. PubMed ID: 31252804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable dual-band mid-infrared absorber based on the coupling of a graphene surface plasmon polariton and Tamm phonon-polariton.
    Han J; Shao Y; Chen C; Wang J; Gao Y; Gao Y
    Opt Express; 2021 May; 29(10):15228-15238. PubMed ID: 33985226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system.
    Ruan B; Li M; Liu C; Gao E; Zhang Z; Chang X; Zhang B; Li H
    Phys Chem Chem Phys; 2023 Jan; 25(3):1685-1689. PubMed ID: 36541662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system.
    Hu J; Liu W; Xie W; Zhang W; Yao E; Zhang Y; Zhan Q
    Opt Lett; 2019 Nov; 44(22):5642-5645. PubMed ID: 31730127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressing the radiation loss by hybrid Tamm-surface plasmon BIC modes.
    Qiao T; Hu M; Wang Q; Xiao M; Zhu S; Liu H
    Opt Express; 2024 Jun; 32(12):21497-21505. PubMed ID: 38859502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton.
    Wu F; Xiao S
    Opt Express; 2023 Feb; 31(4):5722-5735. PubMed ID: 36823845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled Tamm Phonon and Plasmon Polaritons for Designer Planar Multiresonance Absorbers.
    He M; Nolen JR; Nordlander J; Cleri A; Lu G; Arnaud T; McIlwaine NS; Diaz-Granados K; Janzen E; Folland TG; Edgar JH; Maria JP; Caldwell JD
    Adv Mater; 2023 May; 35(20):e2209909. PubMed ID: 36843308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actively tunable multi-band terahertz perfect absorber due to the hybrid strong coupling in the multilayer structure.
    Zhang K; Xia F; Li S; Liu Y; Kong W
    Opt Express; 2021 Aug; 29(18):28619-28630. PubMed ID: 34614988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the graphene layer on the strong coupling in the hybrid Tamm-plasmon polariton mode.
    Buzavaite-Verteliene E; Valavicius A; Grineviciute L; Tolenis T; Lukose R; Niaura G; Balevicius Z
    Opt Express; 2020 Mar; 28(7):10308-10319. PubMed ID: 32225618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons.
    Rahman SS; Klein T; Klembt S; Gutowski J; Hommel D; Sebald K
    Sci Rep; 2016 Oct; 6():34392. PubMed ID: 27698359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wavelength- and Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons.
    Huang CH; Wu CH; Bikbaev RG; Ye MJ; Chen CW; Wang TJ; Timofeev IV; Lee W; Chen KP
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-graphene hybridized plasmon induced transparency in the terahertz frequencies.
    Yu A; Guo X; Zhu Y; Balakin AV; Shkurinov AP
    Opt Express; 2019 Nov; 27(24):34731-34741. PubMed ID: 31878657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-field manipulation of Tamm plasmon polaritons.
    Li N; Zou Q; Zhao B; Min C; Yuan X; Somekh M; Feng F
    Opt Express; 2023 Feb; 31(5):7321-7335. PubMed ID: 36859866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active tuning of longitudinal strong coupling between anisotropic borophene plasmons and Bloch surface waves.
    Nong J; Xiao X; Feng F; Zhao B; Min C; Yuan X; Somekh M
    Opt Express; 2021 Aug; 29(17):27750-27759. PubMed ID: 34615184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tamm-cavity terahertz detector.
    Tu X; Zhang Y; Zhou S; Tang W; Yan X; Rui Y; Wang W; Yan B; Zhang C; Ye Z; Shi H; Su R; Wan C; Dong D; Xu R; Zhao QY; Zhang LB; Jia XQ; Wang H; Kang L; Chen J; Wu P
    Nat Commun; 2024 Jul; 15(1):5542. PubMed ID: 38956040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Properties of Mid-Infrared Tamm Phonon-Polaritons Emitter with Silicon Carbide-Based Structures.
    Gong C; Zheng G
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid Tamm-surface plasmon polariton mode for highly sensitive detection of protein interactions.
    Buzavaite-Verteliene E; Plikusiene I; Tolenis T; Valavicius A; Anulyte J; Ramanavicius A; Balevicius Z
    Opt Express; 2020 Sep; 28(20):29033-29043. PubMed ID: 33114809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.