These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32630926)

  • 1. Tuning of the polariton modes induced by longitudinal strong coupling in the graphene hybridized DBR cavity.
    Zhang K; Liu Y; Xia F; Li S; Kong W
    Opt Lett; 2020 Jul; 45(13):3669-3672. PubMed ID: 32630926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure.
    Hu J; Yao E; Xie W; Liu W; Li D; Lu Y; Zhan Q
    Opt Express; 2019 Jun; 27(13):18642-18652. PubMed ID: 31252804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable dual-band mid-infrared absorber based on the coupling of a graphene surface plasmon polariton and Tamm phonon-polariton.
    Han J; Shao Y; Chen C; Wang J; Gao Y; Gao Y
    Opt Express; 2021 May; 29(10):15228-15238. PubMed ID: 33985226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slow-light effects based on the tunable Fano resonance in a Tamm state coupled graphene surface plasmon system.
    Ruan B; Li M; Liu C; Gao E; Zhang Z; Chang X; Zhang B; Li H
    Phys Chem Chem Phys; 2023 Jan; 25(3):1685-1689. PubMed ID: 36541662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system.
    Hu J; Liu W; Xie W; Zhang W; Yao E; Zhang Y; Zhan Q
    Opt Lett; 2019 Nov; 44(22):5642-5645. PubMed ID: 31730127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppressing the radiation loss by hybrid Tamm-surface plasmon BIC modes.
    Qiao T; Hu M; Wang Q; Xiao M; Zhu S; Liu H
    Opt Express; 2024 Jun; 32(12):21497-21505. PubMed ID: 38859502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-referencing refractive index sensor based on graphene-assisted TAMM plasmon cavity resonance.
    Shen S; Hameed AMF; Dai J
    Opt Lett; 2024 Oct; 49(20):5965-5968. PubMed ID: 39404583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton.
    Wu F; Xiao S
    Opt Express; 2023 Feb; 31(4):5722-5735. PubMed ID: 36823845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled Tamm Phonon and Plasmon Polaritons for Designer Planar Multiresonance Absorbers.
    He M; Nolen JR; Nordlander J; Cleri A; Lu G; Arnaud T; McIlwaine NS; Diaz-Granados K; Janzen E; Folland TG; Edgar JH; Maria JP; Caldwell JD
    Adv Mater; 2023 May; 35(20):e2209909. PubMed ID: 36843308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Actively tunable multi-band terahertz perfect absorber due to the hybrid strong coupling in the multilayer structure.
    Zhang K; Xia F; Li S; Liu Y; Kong W
    Opt Express; 2021 Aug; 29(18):28619-28630. PubMed ID: 34614988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the graphene layer on the strong coupling in the hybrid Tamm-plasmon polariton mode.
    Buzavaite-Verteliene E; Valavicius A; Grineviciute L; Tolenis T; Lukose R; Niaura G; Balevicius Z
    Opt Express; 2020 Mar; 28(7):10308-10319. PubMed ID: 32225618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of a hybrid state of Tamm plasmons and microcavity exciton polaritons.
    Rahman SS; Klein T; Klembt S; Gutowski J; Hommel D; Sebald K
    Sci Rep; 2016 Oct; 6():34392. PubMed ID: 27698359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wavelength- and Angle-Selective Photodetectors Enabled by Graphene Hot Electrons with Tamm Plasmon Polaritons.
    Huang CH; Wu CH; Bikbaev RG; Ye MJ; Chen CW; Wang TJ; Timofeev IV; Lee W; Chen KP
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-graphene hybridized plasmon induced transparency in the terahertz frequencies.
    Yu A; Guo X; Zhu Y; Balakin AV; Shkurinov AP
    Opt Express; 2019 Nov; 27(24):34731-34741. PubMed ID: 31878657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-field manipulation of Tamm plasmon polaritons.
    Li N; Zou Q; Zhao B; Min C; Yuan X; Somekh M; Feng F
    Opt Express; 2023 Feb; 31(5):7321-7335. PubMed ID: 36859866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active tuning of longitudinal strong coupling between anisotropic borophene plasmons and Bloch surface waves.
    Nong J; Xiao X; Feng F; Zhao B; Min C; Yuan X; Somekh M
    Opt Express; 2021 Aug; 29(17):27750-27759. PubMed ID: 34615184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tamm-cavity terahertz detector.
    Tu X; Zhang Y; Zhou S; Tang W; Yan X; Rui Y; Wang W; Yan B; Zhang C; Ye Z; Shi H; Su R; Wan C; Dong D; Xu R; Zhao QY; Zhang LB; Jia XQ; Wang H; Kang L; Chen J; Wu P
    Nat Commun; 2024 Jul; 15(1):5542. PubMed ID: 38956040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Properties of Mid-Infrared Tamm Phonon-Polaritons Emitter with Silicon Carbide-Based Structures.
    Gong C; Zheng G
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.