These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32630939)

  • 1. Optofluidic waveguide bending by thermal diffusion for visible light control.
    Zuo Y; Liu H; Yang Y
    Opt Lett; 2020 Jul; 45(13):3725-3728. PubMed ID: 32630939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic gradient refractive index resonators using liquid diffusion for tunable unidirectional emission.
    Liu HL; Zuo YF; Zhu XQ; Yang Y
    Lab Chip; 2020 Aug; 20(15):2656-2662. PubMed ID: 32578645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation optofluidics for large-angle light bending and tuning.
    Yang Y; Chin LK; Tsai JM; Tsai DP; Zheludev NI; Liu AQ
    Lab Chip; 2012 Oct; 12(19):3785-90. PubMed ID: 22868356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.
    Thio SK; Jiang D; Park SY
    Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.
    Yang Y; Liu AQ; Chin LK; Zhang XM; Tsai DP; Lin CL; Lu C; Wang GP; Zheludev NI
    Nat Commun; 2012 Jan; 3():651. PubMed ID: 22337129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable self-imaging effect using hybrid optofluidic waveguides.
    Shi Y; Liang L; Zhu XQ; Zhang XM; Yang Y
    Lab Chip; 2015 Dec; 15(23):4398-403. PubMed ID: 26463108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficient subwavelength-scale optofluidic waveguides with tapered microstructured optical fibers.
    Yu R; Wang C; Jiang W; Shen Z; Yan Z; Hao Y; Shi Y; Yu F; Hua P; Schötz G; Liu AQ; Xiao L
    Opt Express; 2021 Nov; 29(23):38068-38081. PubMed ID: 34808866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation bending device emulated by graded-index waveguide.
    Wang Y; Sheng C; Liu H; Zheng YJ; Zhu C; Wang SM; Zhu SN
    Opt Express; 2012 Jun; 20(12):13006-13. PubMed ID: 22714328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optofluidic variable-focus lenses for light manipulation.
    Seow YC; Lim SP; Lee HP
    Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metasurface optofluidics for dynamic control of light fields.
    Li Q; van de Groep J; White AK; Song JH; Longwell SA; Fordyce PM; Quake SR; Kik PG; Brongersma ML
    Nat Nanotechnol; 2022 Oct; 17(10):1097-1103. PubMed ID: 36163507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Demand Fully Enclosed Superhydrophobic-Optofluidic Devices Enabled by Microstereolithography.
    Chang Y; Bao M; Waitkus J; Cai H; Du K
    Langmuir; 2022 Aug; 38(34):10672-10678. PubMed ID: 35984448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing.
    Zuo Y; Zhu X; Shi Y; Liang L; Yang Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid core photonic crystal fiber with low-refractive-index liquids for optofluidic applications.
    Park J; Kang DE; Paulson B; Nazari T; Oh K
    Opt Express; 2014 Jul; 22(14):17320-30. PubMed ID: 25090545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new type of microphotoreactor with integrated optofluidic waveguide based on solid-air nanoporous aerogels.
    Özbakır Y; Jonáš A; Kiraz A; Erkey C
    R Soc Open Sci; 2018 Nov; 5(11):180802. PubMed ID: 30564391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiresonant fibers with single- and double-ring capillaries for optofluidic applications.
    Hoang VT; Dobrakowski D; Stępniewski G; Kasztelanic R; Pysz D; Dinh KX; Klimczak M; Śmietana M; Buczyński R
    Opt Express; 2020 Oct; 28(22):32483-32498. PubMed ID: 33114933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of bending losses for highly confined modes of optical waveguides with transformation optics.
    Han Z; Zhang P; Bozhevolnyi SI
    Opt Lett; 2013 Jun; 38(11):1778-80. PubMed ID: 23722741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom.
    Mao X; Lin SC; Lapsley MI; Shi J; Juluri BK; Huang TJ
    Lab Chip; 2009 Jul; 9(14):2050-8. PubMed ID: 19568674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic waveguides for reconfigurable photonic systems.
    Chung AJ; Erickson D
    Opt Express; 2011 Apr; 19(9):8602-9. PubMed ID: 21643111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.