BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32631087)

  • 1. Small RNA sequencing reveals miRNAs important for hypoxic adaptation in the Tibetan chicken.
    Zhang Z; Qiu M; Du H; Li Q; Yu C; Gan W; Peng H; Xia B; Xiong X; Song X; Yang L; Hu C; Chen J; Yang C; Jiang X
    Br Poult Sci; 2020 Dec; 61(6):632-639. PubMed ID: 32631087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory effects of circular RNA on hypoxia adaptation in chicken embryos.
    Chen X; Zhang Y; Zhang W; Nie R; Bao H; Zhang B; Zhang H
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37788641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on Tibetan Chicken embryonic adaptability to chronic hypoxia by revealing differential gene expression in heart tissue.
    Li M; Zhao C
    Sci China C Life Sci; 2009 Mar; 52(3):284-95. PubMed ID: 19294354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of key HIF-1α target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos.
    Zhang Y; Zhang H; Zhang B; Ling Y; Zhang H
    Gene; 2020 Mar; 729():144321. PubMed ID: 31887331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specific expression pattern of globin mRNAs in Tibetan chicken during late embryonic stage under hypoxia.
    Liu C; Zhang LF; Li N
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Apr; 164(4):638-44. PubMed ID: 23000881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive analysis of coding and non-coding RNA transcriptomes related to hypoxic adaptation in Tibetan chickens.
    Zhang Y; Su W; Zhang B; Ling Y; Kim WK; Zhang H
    J Anim Sci Biotechnol; 2021 May; 12(1):60. PubMed ID: 33934713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Sequencing Analysis of miRNA Expression in Breast Muscle of Fast-Growing and Slow-Growing Broilers.
    Ouyang H; He X; Li G; Xu H; Jia X; Nie Q; Zhang X
    Int J Mol Sci; 2015 Jul; 16(7):16242-62. PubMed ID: 26193261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comprehensive MicroRNA Expression Profile Related to Hypoxia Adaptation in the Tibetan Pig.
    Zhang B; Qiangba Y; Shang P; Wang Z; Ma J; Wang L; Zhang H
    PLoS One; 2015; 10(11):e0143260. PubMed ID: 26571238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics.
    Zhang Y; Gou W; Zhang Y; Zhang H; Wu C
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Sep; 31():100602. PubMed ID: 31212116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Erythrocyte MicroRNA Profiles in Low- and High-Altitude Individuals.
    Sun L; Fan F; Li R; Niu B; Zhu L; Yu S; Wang S; Li C; Wang D
    Front Physiol; 2018; 9():1099. PubMed ID: 30154732
    [No Abstract]   [Full Text] [Related]  

  • 11. Small RNA sequencing of pectoral muscle tissue reveals microRNA-mediated gene modulation in chicken muscle growth.
    Zhang Z; Qiu M; Du H; Li Q; Gan W; Xiong X; Yu C; Peng H; Xia B; Song X; Yang L; Hu C; Chen J; Yang C; Jiang X
    J Anim Physiol Anim Nutr (Berl); 2020 May; 104(3):867-875. PubMed ID: 31957920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of miRNAs associated with sexual maturity in chicken ovary by Illumina small RNA deep sequencing.
    Kang L; Cui X; Zhang Y; Yang C; Jiang Y
    BMC Genomics; 2013 May; 14():352. PubMed ID: 23705682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolomics and transcriptomics of embryonic livers reveal hypoxia adaptation of Tibetan chickens.
    Xue M; Yu R; Yang L; Xie F; Fang M; Tang Q
    BMC Genomics; 2024 Feb; 25(1):131. PubMed ID: 38302894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative transcriptomic and proteomic analyses provide insights into functional genes for hypoxic adaptation in embryos of Tibetan chickens.
    Zhang Y; Zheng X; Zhang Y; Zhang H; Zhang X; Zhang H
    Sci Rep; 2020 Jul; 10(1):11213. PubMed ID: 32641697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cecal MicroRNAome response to Salmonella enterica serovar Enteritidis infection in White Leghorn Layer.
    Wu G; Qi Y; Liu X; Yang N; Xu G; Liu L; Li X
    BMC Genomics; 2017 Jan; 18(1):77. PubMed ID: 28086873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key miRNAs and Genes in the High-Altitude Adaptation of Tibetan Chickens.
    Chen B; Li D; Ran B; Zhang P; Wang T
    Front Vet Sci; 2022; 9():911685. PubMed ID: 35909692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative analysis of miRNA and mRNA profiles reveals that gga-miR-106-5p inhibits adipogenesis by targeting the KLF15 gene in chickens.
    Tian W; Hao X; Nie R; Ling Y; Zhang B; Zhang H; Wu C
    J Anim Sci Biotechnol; 2022 Jul; 13(1):81. PubMed ID: 35791010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of miRNA and mRNA reveals core interaction networks and pathways of dexamethasone-induced immunosuppression in chicken bursa of Fabricius.
    Su A; Guo Y; Tian H; Zhou Y; Li W; Tian Y; Li K; Sun G; Jiang R; Yan F; Kang X
    Mol Immunol; 2021 Jun; 134():34-47. PubMed ID: 33711668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Varied hypoxia adaptation patterns of embryonic brain at different development stages between Tibetan and Dwarf laying chickens.
    Tang Q; Yu R; Wang Y; Xie F; Zhang H; Wu C; Fang M
    BMC Genomics; 2023 Jun; 24(1):342. PubMed ID: 37344809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation between miRNAs and target genes in response to Campylobacter jejuni inoculation in chicken.
    Wang H; Liu L; Liu X; Zhang M; Li X
    Poult Sci; 2018 Feb; 97(2):485-493. PubMed ID: 29253230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.