BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

517 related articles for article (PubMed ID: 32631221)

  • 21. Attention-based deep learning framework for automatic fundus image processing to aid in diabetic retinopathy grading.
    Romero-Oraá R; Herrero-Tudela M; López MI; Hornero R; García M
    Comput Methods Programs Biomed; 2024 Jun; 249():108160. PubMed ID: 38583290
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening.
    Rajalakshmi R; Arulmalar S; Usha M; Prathiba V; Kareemuddin KS; Anjana RM; Mohan V
    PLoS One; 2015; 10(9):e0138285. PubMed ID: 26401839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated detection of diabetic retinopathy in retinal images.
    Valverde C; Garcia M; Hornero R; Lopez-Galvez MI
    Indian J Ophthalmol; 2016 Jan; 64(1):26-32. PubMed ID: 26953020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Survey on recent developments in automatic detection of diabetic retinopathy.
    Bilal A; Sun G; Mazhar S
    J Fr Ophtalmol; 2021 Mar; 44(3):420-440. PubMed ID: 33526268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Imaging and Biomarkers in Diabetic Macular Edema and Diabetic Retinopathy.
    Kwan CC; Fawzi AA
    Curr Diab Rep; 2019 Aug; 19(10):95. PubMed ID: 31473838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of diabetic retinopathy using two ultra-wide-field fundus imaging systems, the Clarus® and Optos™ systems.
    Hirano T; Imai A; Kasamatsu H; Kakihara S; Toriyama Y; Murata T
    BMC Ophthalmol; 2018 Dec; 18(1):332. PubMed ID: 30572870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images.
    Oh K; Kang HM; Leem D; Lee H; Seo KY; Yoon S
    Sci Rep; 2021 Jan; 11(1):1897. PubMed ID: 33479406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Algorithms for Diagnosis of Diabetic Retinopathy and Diabetic Macula Edema- A Review.
    Suriyasekeran K; Santhanamahalingam S; Duraisamy M
    Adv Exp Med Biol; 2021; 1307():357-373. PubMed ID: 32166636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Smartphone for retinal imaging - Case series in resource-limited rural settings.
    Vishwanath ; Swamy DT; Gaddi DS
    Indian J Ophthalmol; 2023 May; 71(5):2008-2013. PubMed ID: 37203074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Various models for diabetic retinopathy screening that can be applied to India.
    Rajalakshmi R; Prathiba V; Rani PK; Mohan V
    Indian J Ophthalmol; 2021 Nov; 69(11):2951-2958. PubMed ID: 34708729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep Learning and Medical Image Processing Techniques for Diabetic Retinopathy: A Survey of Applications, Challenges, and Future Trends.
    Uppamma P; Bhattacharya S
    J Healthc Eng; 2023; 2023():2728719. PubMed ID: 36776951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme: a prospective interventional cohort study.
    Ruamviboonsuk P; Tiwari R; Sayres R; Nganthavee V; Hemarat K; Kongprayoon A; Raman R; Levinstein B; Liu Y; Schaekermann M; Lee R; Virmani S; Widner K; Chambers J; Hersch F; Peng L; Webster DR
    Lancet Digit Health; 2022 Apr; 4(4):e235-e244. PubMed ID: 35272972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnostic accuracy of diabetic retinopathy grading by an artificial intelligence-enabled algorithm compared with a human standard for wide-field true-colour confocal scanning and standard digital retinal images.
    Olvera-Barrios A; Heeren TF; Balaskas K; Chambers R; Bolter L; Egan C; Tufail A; Anderson J
    Br J Ophthalmol; 2021 Feb; 105(2):265-270. PubMed ID: 32376611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of smartphones for detecting diabetic retinopathy: a protocol for a scoping review of diagnostic test accuracy studies.
    Tan CH; Quah WH; Tan CSH; Smith H; Tudor Car L
    BMJ Open; 2019 Dec; 9(12):e028811. PubMed ID: 31818832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diabetic Retinopathy Fundus Image Classification and Lesions Localization System Using Deep Learning.
    Alyoubi WL; Abulkhair MF; Shalash WM
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073541
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical Role of Smartphone Fundus Imaging in Diabetic Retinopathy and Other Neuro-retinal Diseases.
    Pujari A; Saluja G; Agarwal D; Sinha A; P R A; Kumar A; Sharma N
    Curr Eye Res; 2021 Nov; 46(11):1605-1613. PubMed ID: 34325587
    [No Abstract]   [Full Text] [Related]  

  • 38. An Automated System for the Detection and Classification of Retinal Changes Due to Red Lesions in Longitudinal Fundus Images.
    Adal KM; van Etten PG; Martinez JP; Rouwen KW; Vermeer KA; van Vliet LJ
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1382-1390. PubMed ID: 28922110
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mobile computer aided system for optic nerve head detection.
    Elloumi Y; Akil M; Kehtarnavaz N
    Comput Methods Programs Biomed; 2018 Aug; 162():139-148. PubMed ID: 29903480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diabetic Retinopathy Screening Using Artificial Intelligence and Handheld Smartphone-Based Retinal Camera.
    Malerbi FK; Andrade RE; Morales PH; Stuchi JA; Lencione D; de Paulo JV; Carvalho MP; Nunes FS; Rocha RM; Ferraz DA; Belfort R
    J Diabetes Sci Technol; 2022 May; 16(3):716-723. PubMed ID: 33435711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.