These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 32631221)
61. A tool for automated diabetic retinopathy pre-screening based on retinal image computer analysis. Gegundez-Arias ME; Marin D; Ponte B; Alvarez F; Garrido J; Ortega C; Vasallo MJ; Bravo JM Comput Biol Med; 2017 Sep; 88():100-109. PubMed ID: 28711766 [TBL] [Abstract][Full Text] [Related]
62. Retinal image quality assessment using deep learning. Zago GT; AndreĆ£o RV; Dorizzi B; Teatini Salles EO Comput Biol Med; 2018 Dec; 103():64-70. PubMed ID: 30340214 [TBL] [Abstract][Full Text] [Related]
63. Using deep learning to detect diabetic retinopathy on handheld non-mydriatic retinal images acquired by field workers in community settings. Nunez do Rio JM; Nderitu P; Raman R; Rajalakshmi R; Kim R; Rani PK; Sivaprasad S; Bergeles C; Sci Rep; 2023 Jan; 13(1):1392. PubMed ID: 36697482 [TBL] [Abstract][Full Text] [Related]
64. Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy. Silva PS; Cavallerano JD; Sun JK; Noble J; Aiello LM; Aiello LP Am J Ophthalmol; 2012 Sep; 154(3):549-559.e2. PubMed ID: 22626617 [TBL] [Abstract][Full Text] [Related]
65. Deep Learning Techniques for Diabetic Retinopathy Detection. Qummar S; Khan FG; Shah S; Khan A; Din A; Gao J Curr Med Imaging; 2020; 16(10):1201-1213. PubMed ID: 32107999 [TBL] [Abstract][Full Text] [Related]
66. Points of interest and visual dictionaries for automatic retinal lesion detection. Rocha A; Carvalho T; Jelinek HF; Goldenstein S; Wainer J IEEE Trans Biomed Eng; 2012 Aug; 59(8):2244-53. PubMed ID: 22665502 [TBL] [Abstract][Full Text] [Related]
67. Comparison of Two Ultra-Widefield Cameras With High Image Resolution and Wider View for Identifying Diabetic Retinopathy Lesions. Khan R; Raman S; Karamcheti SKM; Srinivasan S; Sharma A; Surya J; Bhende M; Ramasamy K; Verma A; Raman R Transl Vis Sci Technol; 2021 Oct; 10(12):9. PubMed ID: 34614162 [TBL] [Abstract][Full Text] [Related]
68. Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis. Raja DS; Vasuki S Comput Math Methods Med; 2015; 2015():419279. PubMed ID: 25810749 [TBL] [Abstract][Full Text] [Related]
69. The Use of Optical Coherence Tomography for the Detection of Early Diabetic Retinopathy. Somfai GM; Gerding H; DeBuc DC Klin Monbl Augenheilkd; 2018 Apr; 235(4):377-384. PubMed ID: 29669366 [TBL] [Abstract][Full Text] [Related]
70. Validation of a deep learning system for the detection of diabetic retinopathy in Indigenous Australians. Chia MA; Hersch F; Sayres R; Bavishi P; Tiwari R; Keane PA; Turner AW Br J Ophthalmol; 2024 Jan; 108(2):268-273. PubMed ID: 36746615 [TBL] [Abstract][Full Text] [Related]
71. A review on computer-aided recent developments for automatic detection of diabetic retinopathy. Randive SN; Senapati RK; Rahulkar AD J Med Eng Technol; 2019 Feb; 43(2):87-99. PubMed ID: 31198073 [TBL] [Abstract][Full Text] [Related]
72. Multicolor image classification using the multimodal information bottleneck network (MMIB-Net) for detecting diabetic retinopathy. Song J; Zheng Y; Wang J; Zakir Ullah M; Jiao W Opt Express; 2021 Jul; 29(14):22732-22748. PubMed ID: 34266030 [TBL] [Abstract][Full Text] [Related]
73. A computer-aided diagnostic system for detecting diabetic retinopathy in optical coherence tomography images. ElTanboly A; Ismail M; Shalaby A; Switala A; El-Baz A; Schaal S; Gimel'farb G; El-Azab M Med Phys; 2017 Mar; 44(3):914-923. PubMed ID: 28035657 [TBL] [Abstract][Full Text] [Related]
74. Automated image curation in diabetic retinopathy screening using deep learning. Nderitu P; Nunez do Rio JM; Webster ML; Mann SS; Hopkins D; Cardoso MJ; Modat M; Bergeles C; Jackson TL Sci Rep; 2022 Jul; 12(1):11196. PubMed ID: 35778615 [TBL] [Abstract][Full Text] [Related]
76. Improved Automatic Grading of Diabetic Retinopathy Using Deep Learning and Principal Component Analysis. Mohamed E; Elmohsen MA; Basha T Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3898-3901. PubMed ID: 34892084 [TBL] [Abstract][Full Text] [Related]
77. Diagnostic accuracy of handheld fundus photography: A comparative study of three commercially available cameras. Lu L; Ausayakhun S; Ausayakuhn S; Khunsongkiet P; Apivatthakakul A; Sun CQ; Kim TN; Lee M; Tsui E; Sutra P; Keenan JD PLOS Digit Health; 2022 Nov; 1(11):e0000131. PubMed ID: 36812561 [TBL] [Abstract][Full Text] [Related]
78. Automated Identification of Diabetic Retinopathy Using Deep Learning. Gargeya R; Leng T Ophthalmology; 2017 Jul; 124(7):962-969. PubMed ID: 28359545 [TBL] [Abstract][Full Text] [Related]
79. Convolutional neural network-based sea lion optimization algorithm for the detection and classification of diabetic retinopathy. Hemanth SV; Alagarsamy S; Dhiliphan Rajkumar T Acta Diabetol; 2023 Oct; 60(10):1377-1389. PubMed ID: 37368025 [TBL] [Abstract][Full Text] [Related]
80. The Role of Retinal Imaging and Portable Screening Devices in Tele-ophthalmology Applications for Diabetic Retinopathy Management. DeBuc DC Curr Diab Rep; 2016 Dec; 16(12):132. PubMed ID: 27841014 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]