These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
512 related articles for article (PubMed ID: 32631221)
81. Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. Sayres R; Taly A; Rahimy E; Blumer K; Coz D; Hammel N; Krause J; Narayanaswamy A; Rastegar Z; Wu D; Xu S; Barb S; Joseph A; Shumski M; Smith J; Sood AB; Corrado GS; Peng L; Webster DR Ophthalmology; 2019 Apr; 126(4):552-564. PubMed ID: 30553900 [TBL] [Abstract][Full Text] [Related]
82. Detection of neovascularization in retinal images using multivariate m-Mediods based classifier. Usman Akram M; Khalid S; Tariq A; Younus Javed M Comput Med Imaging Graph; 2013; 37(5-6):346-57. PubMed ID: 23916066 [TBL] [Abstract][Full Text] [Related]
83. An Intelligent Model for Blood Vessel Segmentation in Diagnosing DR Using CNN. Sangeethaa SN; Uma Maheswari P J Med Syst; 2018 Aug; 42(10):175. PubMed ID: 30109508 [TBL] [Abstract][Full Text] [Related]
84. Automatic Identification of Referral-Warranted Diabetic Retinopathy Using Deep Learning on Mobile Phone Images. Ludwig CA; Perera C; Myung D; Greven MA; Smith SJ; Chang RT; Leng T Transl Vis Sci Technol; 2020 Dec; 9(2):60. PubMed ID: 33294301 [TBL] [Abstract][Full Text] [Related]
85. An advanced deep learning method to detect and classify diabetic retinopathy based on color fundus images. Akella PL; Kumar R Graefes Arch Clin Exp Ophthalmol; 2024 Jan; 262(1):231-247. PubMed ID: 37548671 [TBL] [Abstract][Full Text] [Related]
86. Leveraging Multimodal Deep Learning Architecture with Retina Lesion Information to Detect Diabetic Retinopathy. Tseng VS; Chen CL; Liang CM; Tai MC; Liu JT; Wu PY; Deng MS; Lee YW; Huang TY; Chen YH Transl Vis Sci Technol; 2020 Jul; 9(2):41. PubMed ID: 32855845 [TBL] [Abstract][Full Text] [Related]
87. Detection of Hard Exudates Using Evolutionary Feature Selection in Retinal Fundus Images. Kadan AB; Subbian PS J Med Syst; 2019 May; 43(7):209. PubMed ID: 31144041 [TBL] [Abstract][Full Text] [Related]
89. Results of Automated Retinal Image Analysis for Detection of Diabetic Retinopathy from the Nakuru Study, Kenya. Hansen MB; Abràmoff MD; Folk JC; Mathenge W; Bastawrous A; Peto T PLoS One; 2015; 10(10):e0139148. PubMed ID: 26425849 [TBL] [Abstract][Full Text] [Related]
90. Automated detection of exudates in colored retinal images for diagnosis of diabetic retinopathy. Akram MU; Tariq A; Anjum MA; Javed MY Appl Opt; 2012 Jul; 51(20):4858-66. PubMed ID: 22781265 [TBL] [Abstract][Full Text] [Related]
91. Stereo nonmydriatic digital-video color retinal imaging compared with Early Treatment Diabetic Retinopathy Study seven standard field 35-mm stereo color photos for determining level of diabetic retinopathy. Bursell SE; Cavallerano JD; Cavallerano AA; Clermont AC; Birkmire-Peters D; Aiello LP; Aiello LM; Ophthalmology; 2001 Mar; 108(3):572-85. PubMed ID: 11237913 [TBL] [Abstract][Full Text] [Related]
92. Recognition of diabetic retinopathy and macular edema using deep learning. Jeribi F; Nazir T; Nawaz M; Javed A; Alhameed M; Tahir A Med Biol Eng Comput; 2024 Sep; 62(9):2687-2701. PubMed ID: 38684593 [TBL] [Abstract][Full Text] [Related]
93. Automated diabetic retinopathy detection with two different retinal imaging devices using artificial intelligence: a comparison study. Sarao V; Veritti D; Lanzetta P Graefes Arch Clin Exp Ophthalmol; 2020 Dec; 258(12):2647-2654. PubMed ID: 32936359 [TBL] [Abstract][Full Text] [Related]
94. Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients. Maqsood S; Damaševičius R; Maskeliūnas R Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205120 [TBL] [Abstract][Full Text] [Related]
95. An Interpretable Ensemble Deep Learning Model for Diabetic Retinopathy Disease Classification. Jiang H; Yang K; Gao M; Zhang D; Ma H; Qian W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2045-2048. PubMed ID: 31946303 [TBL] [Abstract][Full Text] [Related]
96. An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images. Papadopoulos A; Topouzis F; Delopoulos A Sci Rep; 2021 Jul; 11(1):14326. PubMed ID: 34253799 [TBL] [Abstract][Full Text] [Related]
97. Diabetic retinopathy techniques in retinal images: A review. Salamat N; Missen MMS; Rashid A Artif Intell Med; 2019 Jun; 97():168-188. PubMed ID: 30448367 [TBL] [Abstract][Full Text] [Related]
98. The Diabetic Retinopathy Screening Workflow: Potential for Smartphone Imaging. Bolster NM; Giardini ME; Bastawrous A J Diabetes Sci Technol; 2015 Nov; 10(2):318-24. PubMed ID: 26596630 [TBL] [Abstract][Full Text] [Related]
99. Efficacy of smartphone-based retinal photography by undergraduate students in screening and early diagnosing diabetic retinopathy. Gobbi JD; Braga JPR; Lucena MM; Bellanda VCF; Frasson MVS; Ferraz D; Koh V; Jorge R Int J Retina Vitreous; 2022 Jun; 8(1):35. PubMed ID: 35672839 [TBL] [Abstract][Full Text] [Related]
100. Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Zago GT; Andreão RV; Dorizzi B; Teatini Salles EO Comput Biol Med; 2020 Jan; 116():103537. PubMed ID: 31747632 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]