These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32631571)

  • 1. Design, synthesis and biological activity of novel substituted 3-benzoic acid derivatives as MtDHFR inhibitors.
    Kronenberger T; Ferreira GM; de Souza ADF; da Silva Santos S; Poso A; Ribeiro JA; Tavares MT; Pavan FR; Trossini GHG; Dias MVB; Parise-Filho R
    Bioorg Med Chem; 2020 Aug; 28(15):115600. PubMed ID: 32631571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico structure-based design of a novel class of potent and selective small peptide inhibitor of Mycobacterium tuberculosis Dihydrofolate reductase, a potential target for anti-TB drug discovery.
    Kumar M; Vijayakrishnan R; Subba Rao G
    Mol Divers; 2010 Aug; 14(3):595-604. PubMed ID: 19697148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding mode analysis of 2,4-diamino-5-methyl-5-deaza-6-substituted pteridines with Mycobacterium tuberculosis and human dihydrofolate reductases.
    da Cunha EF; Ramalho TC; Reynolds RC
    J Biomol Struct Dyn; 2008 Feb; 25(4):377-85. PubMed ID: 18092832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors.
    Shelke RU; Degani MS; Raju A; Ray MK; Rajan MG
    Arch Pharm (Weinheim); 2016 Aug; 349(8):602-13. PubMed ID: 27320965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of 5-deazapteridine derivatives with Mycobacterium tuberculosis and with human dihydrofolate reductases.
    da Cunha EF; de Castro Ramalho T; Bicca de Alencastro R; Maia ER
    J Biomol Struct Dyn; 2004 Oct; 22(2):119-30. PubMed ID: 15317473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational drug design, synthesis and biological evaluation of dihydrofolate reductase inhibitors as antituberculosis agents.
    Tawari NR; Bag S; Raju A; Lele AC; Bairwa R; Ray MK; Rajan MG; Nawale LU; Sarkar D; Degani MS
    Future Med Chem; 2015; 7(8):979-88. PubMed ID: 26062396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors.
    Desai NC; Trivedi AR; Khedkar VM
    Bioorg Med Chem Lett; 2016 Aug; 26(16):4030-5. PubMed ID: 27397497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel selective Mtb-DHFR inhibitors as antitubercular agents through structure-based computational techniques.
    Sharma K; Neshat N; Sharma S; Giri N; Srivastava A; Almalki F; Saifullah K; Alam MM; Shaquiquzzaman M; Akhter M
    Arch Pharm (Weinheim); 2020 Feb; 353(2):e1900287. PubMed ID: 31867798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Insights into Mycobacterium tuberculosis Rv2671 Protein as a Dihydrofolate Reductase Functional Analogue Contributing to para-Aminosalicylic Acid Resistance.
    Cheng YS; Sacchettini JC
    Biochemistry; 2016 Feb; 55(7):1107-19. PubMed ID: 26848874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium tuberculosis dihydrofolate reductase reveals two conformational states and a possible low affinity mechanism to antifolate drugs.
    Dias MV; Tyrakis P; Domingues RR; Paes Leme AF; Blundell TL
    Structure; 2014 Jan; 22(1):94-103. PubMed ID: 24210757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, molecular docking study and biological evaluation of new pyrrole scaffolds as potential antitubercular agents for dual targeting of enoyl ACP reductase and dihydrofolate reductase.
    Mahnashi MH; Avunoori S; Gopi S; Shaikh IA; Saif A; Bantun F; Faidah HS; Alhadi AA; Alshehri JH; Alharbi AA; S R PK; Joshi SD
    PLoS One; 2024; 19(5):e0303173. PubMed ID: 38739587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a Fragment-Based Approach to Identify Alternative Chemical Scaffolds Targeting Dihydrofolate Reductase from
    Ribeiro JA; Hammer A; Libreros-Zúñiga GA; Chavez-Pacheco SM; Tyrakis P; de Oliveira GS; Kirkman T; El Bakali J; Rocco SA; Sforça ML; Parise-Filho R; Coyne AG; Blundell TL; Abell C; Dias MVB
    ACS Infect Dis; 2020 Aug; 6(8):2192-2201. PubMed ID: 32603583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design, synthesis, antimycobacterial activity and molecular docking studies of novel 3- (N-substituted glycinamido) benzoic acid analogues as anti tubercular agents.
    Veeravarapu H; Tirumalasetty M; Kurati S; Wunnava U; Krishna Kumar Muthyala M
    Bioorg Med Chem Lett; 2020 Dec; 30(23):127603. PubMed ID: 33039564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis.
    El-Hamamsy MH; Smith AW; Thompson AS; Threadgill MD
    Bioorg Med Chem; 2007 Jul; 15(13):4552-76. PubMed ID: 17451962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural comparison of Mtb-DHFR and h-DHFR for design, synthesis and evaluation of selective non-pteridine analogues as antitubercular agents.
    Sharma K; Tanwar O; Sharma S; Ali S; Alam MM; Zaman MS; Akhter M
    Bioorg Chem; 2018 Oct; 80():319-333. PubMed ID: 29986181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragment-based design of symmetrical bis-benzimidazoles as selective inhibitors of the trimethoprim-resistant, type II R67 dihydrofolate reductase.
    Bastien D; Ebert MC; Forge D; Toulouse J; Kadnikova N; Perron F; Mayence A; Huang TL; Vanden Eynde JJ; Pelletier JN
    J Med Chem; 2012 Apr; 55(7):3182-92. PubMed ID: 22424148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,3,5-triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity.
    Yang X; Wedajo W; Yamada Y; Dahlroth SL; Neo JJ; Dick T; Chui WK
    Eur J Med Chem; 2018 Jan; 144():262-276. PubMed ID: 29274493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and structure activity relationships of cyanopyridone based anti-tuberculosis agents.
    Jian Y; Hulpia F; Risseeuw MDP; Forbes HE; Munier-Lehmann H; Caljon G; Boshoff HIM; Van Calenbergh S
    Eur J Med Chem; 2020 Sep; 201():112450. PubMed ID: 32623208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, crystal structure and biological evaluation of substituted quinazolinone benzoates as novel antituberculosis agents targeting acetohydroxyacid synthase.
    Lu W; Baig IA; Sun HJ; Cui CJ; Guo R; Jung IP; Wang D; Dong M; Yoon MY; Wang JG
    Eur J Med Chem; 2015 Apr; 94():298-305. PubMed ID: 25771108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs.
    Li R; Sirawaraporn R; Chitnumsub P; Sirawaraporn W; Wooden J; Athappilly F; Turley S; Hol WG
    J Mol Biol; 2000 Jan; 295(2):307-23. PubMed ID: 10623528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.