These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 32631888)

  • 1. Thermal bottlenecks in the life cycle define climate vulnerability of fish.
    Dahlke FT; Wohlrab S; Butzin M; Pörtner HO
    Science; 2020 Jul; 369(6499):65-70. PubMed ID: 32631888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations.
    Ruthsatz K; Dahlke F; Alter K; Wohlrab S; Eterovick PC; Lyra ML; Gippner S; Cooke SJ; Peck MA
    Glob Chang Biol; 2024 May; 30(5):e17318. PubMed ID: 38771091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical thermal maxima of early life stages of three tropical fishes: Effects of rearing temperature and experimental heating rate.
    Illing B; Downie AT; Beghin M; Rummer JL
    J Therm Biol; 2020 May; 90():102582. PubMed ID: 32479385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
    Verberk WC; Overgaard J; Ern R; Bayley M; Wang T; Boardman L; Terblanche JS
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Feb; 192():64-78. PubMed ID: 26506130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures.
    Norin T; Malte H; Clark TD
    J Exp Biol; 2014 Jan; 217(Pt 2):244-51. PubMed ID: 24115064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraspecific variation in thermal tolerance differs between tropical and temperate fishes.
    Nati JJH; Svendsen MBS; Marras S; Killen SS; Steffensen JF; McKenzie DJ; Domenici P
    Sci Rep; 2021 Oct; 11(1):21272. PubMed ID: 34711864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity.
    Comte L; Olden JD
    Glob Chang Biol; 2017 Feb; 23(2):728-736. PubMed ID: 27406402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change affects marine fishes through the oxygen limitation of thermal tolerance.
    Pörtner HO; Knust R
    Science; 2007 Jan; 315(5808):95-7. PubMed ID: 17204649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature tolerance and oxygen consumption of two South American tetras, Paracheirodon innessi and Hyphessobrycon herbertaxelrodi.
    Cooper CJ; Mueller CA; Eme J
    J Therm Biol; 2019 Dec; 86():102434. PubMed ID: 31789229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of mechanistic physiology in investigating impacts of global warming on fishes.
    Lefevre S; Wang T; McKenzie DJ
    J Exp Biol; 2021 Feb; 224(Pt Suppl 1):. PubMed ID: 33627469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological Mechanisms of Acute Upper Thermal Tolerance in Fish.
    Ern R; Andreassen AH; Jutfelt F
    Physiology (Bethesda); 2023 May; 38(3):141-158. PubMed ID: 36787401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate vulnerability of South American freshwater fish: Thermal tolerance and acclimation.
    Campos DF; Amanajás RD; Almeida-Val VMF; Val AL
    J Exp Zool A Ecol Integr Physiol; 2021 Nov; 335(9-10):723-734. PubMed ID: 33689240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems.
    Pörtner HO
    J Exp Biol; 2010 Mar; 213(6):881-93. PubMed ID: 20190113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny.
    Ruthsatz K; Dausmann KH; Peck MA; Glos J
    J Exp Zool A Ecol Integr Physiol; 2022 Jun; 337(5):477-490. PubMed ID: 35226414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coping with climatic extremes: Dietary fat content decreased the thermal resilience of barramundi (Lates calcarifer).
    Gomez Isaza DF; Cramp RL; Smullen R; Glencross BD; Franklin CE
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Apr; 230():64-70. PubMed ID: 30659952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?
    Habary A; Johansen JL; Nay TJ; Steffensen JF; Rummer JL
    Glob Chang Biol; 2017 Feb; 23(2):566-577. PubMed ID: 27593976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal growth potential of Atlantic cod by the end of the 21st century.
    Butzin M; Pörtner HO
    Glob Chang Biol; 2016 Dec; 22(12):4162-4168. PubMed ID: 27378512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals.
    Pörtner HO
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Aug; 132(4):739-61. PubMed ID: 12095860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning.
    Farrell AP
    J Fish Biol; 2016 Jan; 88(1):322-43. PubMed ID: 26592201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.